Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Ruthenium-containing Polymers against Ovarian Cancers

Project description

Drug-initiated polymerisation treatment against ovarian cancers

Nearly 250 000 women are diagnosed with ovarian cancer each year, resulting in about 140 000 deaths. High-grade epithelial ovarian cancer (EOC) is the deadliest gynaecologic cancer, with a 5-year survival rate of only 40 % due to advanced disease at diagnosis and platinum resistance. Research on ruthenium (Ru) compounds shows promise, but toxicity remains a concern. Macromolecular delivery systems could enhance the effectiveness of these compounds while minimising side effects. The ERC-funded RuCoPOC project will demonstrate that an innovative drug-initiated polymerisation methodology can address this issue. The project will also validate the in vivo efficacy of this system using several patient-derived xenograft (PDX) models of ovarian cancer.

Objective

Nearly 250,000 women are diagnosed each year with ovarian cancer around the world, resulting in 140,000 deaths. High-grade epithelial ovarian cancer (EOC) is the deadliest gynecologic cancer, ranking fifth overall in cancer deaths. The majority of women have widespread intra-abdominal disease at the time of diagnosis, and the 5-year survival rate for these women is only about 40% after receiving standard therapy. Currently, the standard first-line treatment for ovarian cancer consists of surgical cytoreduction and platinum-based chemotherapy. Although this approach has proven to be the most effective treatment to date, many ovarian cancers exhibit primary platinum resistance, and most patients develop secondary platinum resistance during the course of their disease. There is therefore a paucity of approved targeted therapies. Accordingly, effective novel therapies are needed to improve survival rates for patients diagnosed with ovarian cancer, especially in its advanced stages and in the setting of platinum resistance. The phenomenal success of cisplatin, oxaliplatin and carboplatin has boosted the research directed at novel metal-based anticancer drugs. My group has embarked a few years ago into a program to thoroughly investigate Ru compounds as anticancer drug candidates. However, one serious problem of metal-based drugs is often their intrinsic toxicity. To tackle this issue and circumvent these limitations, macromolecular delivery systems can be used to improve the potential of the respective anticancer ruthenium complexes. During the frame of the ERC consolidator grant PhotoMetMed, my group could demonstrate that an innovative drug-initiated polymerization methodology could be used to tackle this problem. In this proposal, to further demonstrate that this technology could be used on human, the in vivo efficacy of this system will be validated in several in ovarian cancer Patient-Derived Xenografts (PDXs) models.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC-POC - HORIZON ERC Proof of Concept Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-POC2

See all projects funded under this call

Host institution

ECOLE NATIONALE SUPERIEURE DE CHIMIE DE PARIS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 150 000,00
Address
11 RUE PIERRE ET MARIE CURIE
75231 PARIS CEDEX 05
France

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0