Project description
Revolutionising cell mechanics with advanced imaging
Cells are known to communicate through biochemical signalling, but research has uncovered the crucial role mechanical forces play in development, physiology, and disease. Biological cells exert forces on their environment, influencing key processes such as tissue formation, wound healing, and cancer cell invasion. Understanding these forces is vital. However, existing imaging techniques fall short in capturing these forces with the necessary sensitivity and resolution. In this context, the ERC-funded CELL-FORCE project introduces Elastic Resonator Interference Stress Microscopy (ERISM) for directly and non-destructively imaging cellular forces. It enables precise measurement of even weak forces and allows for long-term, photodamage-free imaging of cell dynamics. This has the potential to revolutionise cell biomechanics research, drug development, and diagnostics.
Objective
The conventional thinking in cell biology, which often assumes that cells communicate mostly via bio-chemical signalling, has recently been challenged with several examples where mechanical rather than chemical cues play an important role in development, physiology and disease. Biological cells continually exert forces on their environment, which can vary substantially in magnitude, spatial distribution and temporal evolution. These forces are key to many processes including cell growth, tissue formation, wound healing and the invasion of cancer cells into healthy tissue. Understanding how cellular forces affect the micro-environment hinges on our ability to image them with sufficient local and temporal resolution (e.g. continuously over several days with subcellular spatial resolution), adequate field of view (e.g. to study cell sheets) and relevant sensitivity (typical forces are in the pico to nano Newton range). Despite significant advances made in this area of functional bioimaging over the last years, existing methods still struggle to meet the requirements, thus precluding new commercial opportunities in cell biomechanics. CELL-FORCE will demonstrate Elastic Resonator Interference Stress Microscopy (ERISM) as a new microscopy method that allows direct, robust and non-destructive imaging of forces associated with various mechanical cell-substrate interactions, and validate its commercial feasibility. The greatly increased sensitivity offered by ERISM over other methods allows for accurate measurements of vertical forces and of cells exerting only weak force. Moreover, with a low light intensity requirement and no need to detach cells after a measurement, using ERISM makes it possible to take long-term measurements of multiple cells without photodamage and facilitates downstream applications such as immunostaining. This will open up new commercial opportunities in fundamental research, drug development and (long-term) in diagnostics.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences optics microscopy
- medical and health sciences clinical medicine oncology
- natural sciences biological sciences biophysics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC-POC - HORIZON ERC Proof of Concept Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-POC2
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
50931 KOLN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.