Description du projet
Révolutionner la mécanique cellulaire grâce à l’imagerie avancée
On sait que les cellules communiquent par le biais de signaux biochimiques, mais la recherche a mis en évidence le rôle crucial que jouent les forces mécaniques dans le développement, la physiologie et les maladies. Les cellules biologiques exercent des forces sur leur environnement, influençant des processus clés tels que la formation des tissus, la cicatrisation des plaies et l’invasion des cellules cancéreuses. Il est essentiel de comprendre ces forces. Cependant, les techniques d’imagerie existantes ne parviennent pas à capturer ces forces avec la sensibilité et la résolution nécessaires. Dans ce contexte, le projet CELL-FORCE, financé par le CER, introduit la microscopie de stress de résonateur élastique (ERISM) pour l’imagerie directe et non destructive des forces cellulaires. Elle permet de mesurer avec précision les forces, même faibles, et d’obtenir une imagerie à long terme de la dynamique cellulaire, sans photodégradation. Cela pourrait révolutionner la recherche en biomécanique cellulaire, le développement de médicaments et les diagnostics.
Objectif
The conventional thinking in cell biology, which often assumes that cells communicate mostly via bio-chemical signalling, has recently been challenged with several examples where mechanical rather than chemical cues play an important role in development, physiology and disease. Biological cells continually exert forces on their environment, which can vary substantially in magnitude, spatial distribution and temporal evolution. These forces are key to many processes including cell growth, tissue formation, wound healing and the invasion of cancer cells into healthy tissue. Understanding how cellular forces affect the micro-environment hinges on our ability to image them with sufficient local and temporal resolution (e.g. continuously over several days with subcellular spatial resolution), adequate field of view (e.g. to study cell sheets) and relevant sensitivity (typical forces are in the pico to nano Newton range). Despite significant advances made in this area of functional bioimaging over the last years, existing methods still struggle to meet the requirements, thus precluding new commercial opportunities in cell biomechanics. CELL-FORCE will demonstrate Elastic Resonator Interference Stress Microscopy (ERISM) as a new microscopy method that allows direct, robust and non-destructive imaging of forces associated with various mechanical cell-substrate interactions, and validate its commercial feasibility. The greatly increased sensitivity offered by ERISM over other methods allows for accurate measurements of vertical forces and of cells exerting only weak force. Moreover, with a low light intensity requirement and no need to detach cells after a measurement, using ERISM makes it possible to take long-term measurements of multiple cells without photodamage and facilitates downstream applications such as immunostaining. This will open up new commercial opportunities in fundamental research, drug development and (long-term) in diagnostics.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
- sciences naturellessciences physiquesoptiquemicroscopie
- sciences médicales et de la santémédecine cliniqueoncologie
- sciences naturellessciences biologiquesbiophysique
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Programme(s)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Régime de financement
HORIZON-ERC-POC - HORIZON ERC Proof of Concept GrantsInstitution d’accueil
50931 Koln
Allemagne