Project description
Unleashing quantum computing’s potential
Quantum computing is a computing paradigm that harnesses the principles of quantum mechanics to process information. Unlike classical computers that rely on bits (represented as 0s and 1s), quantum computers use quantum bits or qubits. This property provides unparalleled computational power, and it is poised to revolutionise various fields like chemistry, medicine and materials research. However, realising this potential demands millions of high-quality quantum bits (qubits) working coherently. In this context, the EIC-funded Groove project aims to develop high-yield, robust qubits, scaling up to 16 qubits, accessible through cloud services. The team also plans to launch a start-up company to capitalise on the technology’s strong commercial potential. The possibilities for advancements in various scientific fields are vast.
Objective
Quantum computers promise to enable a computing power far beyond the capabilities of modern-day classical and super computers and are expected to revolutionise research in, among others, chemistry, medicine and materials research. However, a quantum computer capable of solving useful problems will require millions of high-quality quantum bits (qubits) working together. Currently, there are several qubit hardware platforms that are being studied and commercialised. This commercialisation mainly focuses on superconducting transmon qubits, photonic qubits and qubits made with trapped ions. Although these platforms enabled the first breakthroughs in quantum computing research and are developing steadily, the large size of the qubit systems may hamper their scaling towards the millions of qubits required for useful quantum computations.
Groove will overcome the scaling problem that most quantum bit platforms will face, by focusing on the semiconductor germanium platform. Germanium qubits stand out due to a small footprint, well-defined, long-lived qubit states and compatibility with semiconductor manufacturing. This is highly promising for scalability. We will develop high-yield, robust qubits and scale up to 16 qubits, which we will make available in the cloud. In parallel we will write a business plan and prepare the launch of a start-up company already during the grant period, given the strong commercial potential of this technology. Our project will greatly contribute to the EU ambition of being in the forefront of the second quantum revolution by enabling a revolutionary technology fulfilling current and future market needs.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- social sciences political sciences political transitions revolutions
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- natural sciences chemical sciences inorganic chemistry metalloids
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.3.1 - The European Innovation Council (EIC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-EIC - HORIZON EIC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-EIC-2022-TRANSITION-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2628 CN DELFT
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.