European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Redox flow batteries charging tomorrow’s world through the in-depth understanding and enhanced control over battery hydrodynamics

Description du projet

Le stockage de l’énergie pour un avenir durable

Alors que la demande mondiale d’énergie renouvelable augmente, la nature intermittente de sources telles que le vent et le soleil pose un problème: le stockage de l’énergie excédentaire pour les périodes de faible production. Les batteries à flux redox sont prometteuses pour le stockage stationnaire de grande capacité, mais des obstacles tels que les limitations du transport de masse et la lenteur de la cinétique entravent leur efficacité. Dans ce contexte, le projet RECHARGE, financé par le CER, associera un flux pulsatile à des électrodes 3D structurées avec précision, dans le but d’emmener les performances des batteries à flux redox vers de nouveaux sommets. Grâce à une compréhension approfondie et à une ingénierie avancée, le projet vise une densité de puissance de 1 000 mW/cm² et un rendement aller-retour supérieur à 85 %. RECHARGE annonce une nouvelle ère en matière d’efficacité et de capacité de stockage de l’énergie.

Objectif

Electrochemical energy storage is essential if we wish to increase the usage of intermittent energy sources such as windmills and solar panels. With intermittent energy sources it is crucial that energy can be stored to meet demand when production is too low. When targeting stationary storage with large capacity and long storage times, redox flow batteries stand out. However, in order to compete with other energy storage technologies several fundamental challenges remain to be resolved. Mass transport limitations, cell resistivities, pressure losses and slow kinetics still pose major barriers that result in unsatisfactory energy efficiencies and power densities.

In RECHARGE, I propose an innovative and disruptive approach. By combining for the first time pulsatile flow with precisely structured 3D electrodes the battery’s performance can be accurately steered towards improved battery hydrodynamics, allowing to surpass state-of-the-art in terms of maximum attainable power density, diminished efficiency losses and enhanced energy capacity. The combination of targeting an in-depth understanding into how reagent, product and electrolyte transport is governed within the redox flow battery by using in operando characterisation and having perfect control over the electrode geometry and flow field design through advanced engineering approaches, will result in unprecedented control over the mass transport and reaction environment. This will yield a significantly improved redox flow battery with a power density of 1000 mW/cm² and a roundtrip efficiency above 85%.

RECHARGE will demonstrate the impact of achieving perfect control over the hydrodynamic and electrochemical characteristics of a redox flow battery and can thus be considered as the first step towards a new generation of redox flow batteries that will completely redesign the electrode structure and fluid control strategies towards strongly improved battery efficiencies.

Régime de financement

HORIZON-ERC - HORIZON ERC Grants

Institution d’accueil

UNIVERSITEIT ANTWERPEN
Contribution nette de l'UE
€ 1 498 614,00
Adresse
PRINSSTRAAT 13
2000 Antwerpen
Belgique

Voir sur la carte

Région
Vlaams Gewest Prov. Antwerpen Arr. Antwerpen
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 1 498 614,00

Bénéficiaires (1)