Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Empirical and mechanistic foundations for synergistic predictive processing in the sensory brain

Objective

Humans effortlessly process over 200 spoken words per minute in casual conversation. Speech recognition algorithms still fail at this challenging task. Our superior performance stems from our capacity to predict what the speaker may say next. Understanding how the brain uses these predictions to process the sensory input is crucial to understand perceptual function and dysfunction: dyslexia, autism and psychosis have all been linked to an impaired handling of predictions.
Hierarchical predictive coding (HPC) is the current leading framework to understand how predictions help us processing sensory inputs. However, HPC is only compatible with the function and organisation of the cerebral cortex. This is a decisive shortcoming: while only cortical stages have the foresight to perform conceptually accurate predictions, only subcortical stations have the temporal properties required to correctly process fast sensory inputs.
SynPrePro will reformulate HPC as an integrated theory explaining how cortical and subcortical stages work together to proficiently process fast and complex sensory inputs like speech.
I will use a unique experimental-theoretical approach to study the human auditory pathway as a model for sensory pathways in four work packages (WPs). WP1 will use cutting-edge human neuroimaging to unravel the implementation of HPC in the auditory pathway. WP2 will use innovative model-based neuroimaging to identify the mechanisms responsible for the generation of conceptually accurate and temporally precise predictions. In WP3 I will develop a ground-breaking computational model to identify the neural mechanisms implementing HPC in the thalamocortical loop. WP4 will use big-data analytics to disentangle how cortical and subcortical stages work together to swiftly process speech.
The outcomes will turn the cortical paradigm of HPC into an integrated theory of cortico-subcortical interactions, revolutionising our understanding of perceptual function and dysfunction.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2023-STG

See all projects funded under this call

Host institution

BCBL BASQUE CENTER ON COGNITION BRAIN AND LANGUAGE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 199 570,00
Address
PASEO MIKELETEGI 69 2
20009 San Sebastian
Spain

See on map

Region
Noreste País Vasco Gipuzkoa
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 199 570,00

Beneficiaries (2)

My booklet 0 0