Objective
As the top industrial energy consumer, the chemical industry must rapidly develop new low-carbon technologies to lower the industrys carbon footprint for preparing chemicals and materials for our everyday life. Current synthetic approaches have a low atom economy and rely on the functionalization of reagents with reactive groups that form desired products at elevated temperatures or pressures. These processes are wasteful and energy-intensive, they form hazardous side products and require energy for heating that is often provided by fossil fuels.
Imagine a future where organic chemical reactions are driven with electricity from renewables with a high atom economy and fewer side products. Electroorganic synthesis holds great promise for achieving these goals since reactive intermediates are formed in situ at electrode surfaces, forming products with high selectivities under efficient reaction conditions. While the field is rapidly maturing and highly selective processes are reported for a wide spectrum of reactions, the majority of electrode materials currently employed are based on precious metals. Relying on precious metals for developing the technology is a risk due to their scarcity, supply-chain bottlenecks, and high cost.
PolyElectroCAT develops a new class of electrode materials for efficient electroorganic synthesis using solely earth-abundant elements. The materials are redox-active carbon-based materials with tailor-made metal complexes that create high activity and selectivity for energy-uphill, reductive electrocatalytic reactions. These materials achieve functionality rarely achieved for metals where electrode materials are solution processible and function as binder- and additive-free electrodes. Moreover, the electrode reacts volumetrically, enabling the exploration of entire new directions for electrosynthesis employing the entire bulk of the electrode material rather than the surface only.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences catalysis electrocatalysis
- engineering and technology environmental engineering energy and fuels
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
412 96 Goteborg
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.