Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Helium dimer Ultracold Molecules - a platform for fundamental physics and ultracold chemistry

Project description

Laser cooling to achieve quantum degeneracy for advanced physics

Laser cooling of atoms has transformed physics, and ultracold molecules offer new possibilities. However, achieving quantum degeneracy with these molecules is challenging due to high densities required and the prevalence of elastic collisions. While four types of molecules have been successfully laser-cooled, collision losses from complex formations hinder further cooling efforts. The ERC-funded HeliUM project aims to laser-cool the lightest homonuclear molecule, He2, to achieve quantum degeneracy. Using a continuous molecular beam and innovative slowing techniques, it will reach densities much higher than current experiments, creating a controllable four-electron system at record-low temperatures for accurate quantum sensing and precision measurements. The project will also advance the understanding of helium reactions and droplets.

Objective

Laser cooling of atoms has revolutionized physics and allowed studying nature with unprecedented sensitivity, precision and accuracy. With their additional degrees of freedom, ultracold molecules offer even more.
However, reaching high densities and a high number of elastic collisions are the two major challenges remaining to achieve quantum degeneracy with molecules. 4 molecules were laser cooled and trapped in the last decade, but recent experiments have shown universal loss upon collisions caused by the formation of complexes and therefore preventing further cooling. Although not yet fully understood, the loss is favored by the large state densities of the heavy diatomic molecules used so far.
I propose a novel strategy: HeliUM aims to overcome both obstacles by achieving direct laser cooling of the lightest and first homonuclear molecule He2 and establishing a path towards quantum degeneracy. The light mass of the molecule, absence of hyperfine structure and a restricted set of rotational states due to the Pauli principle, drastically reduce the level density and facilitate evaporative cooling. Additionally, relying on a continuous molecular beam and implementing an innovative slowing technique will lead to densities several orders of magnitude larger than in existing experiments.
With HeliUM, I will provide a controllable, simple 4-electron system at record low temperature, allowing quantum sensing and precision measurements to test quantum physics and the quantum nature of collisions with unprecedented accuracy - while being accessible to highly accurate ab initio computational methods.
By using Rydberg states and photodissociation, HeliUM will put me at the forefront of measuring cross sections for a plethora of reactions involving charged and neutral, atomic and molecular helium species, relevant for understanding He droplets, astro- and plasma physics. This will complement my strong track record in precision measurements of molecular hydrogen and its ion.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2023-STG

See all projects funded under this call

Host institution

STICHTING VU
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 215 408,00
Address
DE BOELELAAN 1105
1081 HV Amsterdam
Netherlands

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 215 408,00

Beneficiaries (1)

My booklet 0 0