Project description
Breaking free from historical constraints to unravel the mysteries of extreme weather
In the face of escalating climate change, the challenge of connecting local weather dynamics with large-scale circulation has long perplexed scientists. Hail, rain, and strong winds are linked to both cloud updrafts and general circulation. Traditionally, computing constraints led to separate analyses, fostering uncertainties in projecting future extremes. With this in mind, the ERC-funded RECONCILE project departs from conventional models. It focuses on storm populations, adopting an ecological paradigm. This innovative approach promises to break down biases and constraints, offering unprecedented insights into dynamic coherence across scales. With implications for climate model evaluation, RECONCILE charts a groundbreaking course at the nexus of weather and climate extremes, and clouds, circulation, and climate sensitivity.
Objective
As climate changes, weather becomes more severe. This has been of long-standing concern, and difficulties arise in connecting the two different ranges of scales involved. Hail, rainshowers and strong winds result from the local dynamics of cloud updrafts, while the general circulation determines the relative occurrence of convective regimes to maintain energy balance. Historically, limitations in computing power mostly led to separate analyses of cloud dynamics and the large-scale circulation. The mesoscales, in-between, host a rich ecosystem of weather features, organized in a diversity of shapes and morphologies but overly simplified in traditional climate models.
This scale separation leads to large uncertainties in the projection of future extremes: the dynamic adjustment of weather systems to the large-scale flow is unconstrained, and small-scale perturbations may feed back onto the global climate state.
RECONCILE revisits how the multi-scale character of extreme precipitation emerges from the interaction between storms and the large-scale circulation. It introduces a novel approach by focusing on the dynamics of storm populations rather than individual storm objects. This paradigm of populations is borrowed from ecology and scarcely used in climate physics. It allows to overcome strong biases present in operational climate models, by allowing for a diversity in the represented cloud structures and an explicit two-way interaction across the continuum of scales.
The current emergence of global storm-resolving models is an unprecendented opportunity to investigate this dynamic coherence across multiple scales of motion. RECONCILE proposes a way forward, at the intersection of two WCRP's grand challenges: Weather and Climate Extremes, and Clouds, Circulation and Climate Sensitivity, with strong implications for climate model evaluation.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.