Project description
Modelling materials formation at high temperature and pressure
Changes in temperature and pressure affect processes from cellular function to weather. In material science the application of orders of magnitude higher pressures and temperatures can have an even greater influence and lead to surprisingly complex chemistry enabling the synthesis of compounds with extraordinary properties. However, these properties often disappear when the compounds are brought back to ambient pressure and temperature. Computational tools are needed to effectively guide the synthesis of next-generation materials. The ERC-funded UNMASCC-HP project intends to fill this critical gap using density functional theory based calculations and cutting-edge machine learning acceleration, enabling efficient materials modelling and new materials discovery. It will allow the determination of candidate precursor materials and synthesis conditions from simulations at ab initio accuracy.
Objective
Functional materials with outstanding technological properties can be found under extreme pressures and temperatures. This is particularly true for nitrides and hydrides, where the application of high-pressure high-temperature (HPHT) conditions has recently revealed an unexpectedly rich and complex chemistry and enabled the synthesis of compounds showing outstanding mechanical and electronic properties with applications in electronics, hard coatings, hydrogen storage, superconductivity and many more. However, great challenges remain to be conquered in order to truly explore the possibilities permitted by these exotic materials. Indeed, their properties often vanish when brought back to ambient conditions, either because the atomic arrangement or the underlying physical processes becomes energetically unfavourable. Moreover, the importance of finite-T effects and the structural and dynamical complexity of these HPHT phases, prohibit computations so far from efficiently guiding experimental synthesis.
The goal of this project is to provide the computational tools for guiding the efficient and targeted synthesis of next-generation technological materials, including the choice of synthesis conditions and precursor materials. We will search for materials retaining their functional properties under decompression or are directly synthesizable at ambient pressure. To accomplish this, we will develop a work flow based on machine learning inter-atomic potentials to numerically explore experimental synthesis conditions at ab-initio accuracy. This will enable an analysis of thermodynamic competition between different phases at HPHT and rigorous benchmarking against experiments to ensure that we truly portray nature's behaviour.This project will open up uncharted horizons for exploiting pressure and temperature as thermodynamic variables to explore new chemistry and synthesis pathways, ultimately guiding experiments towards industrially relevant novel technological materials.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
581 83 Linkoping
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.