Project description
Understanding diseases through correlative light and X-ray microscopy
Disease researchers require a comprehensive understanding of cellular changes spanning from the micro to nano scale. While correlative light and electron microscopy can achieve this, its complexity and slow pace pose challenges. With the support of the Marie Skłodowska-Curie Actions programme, the CLEXM project seeks to disseminate the advantages of incorporating soft X-ray tomography (SXT) alongside other imaging modalities in disease and drug therapy research. It will facilitate the demonstration of the benefits of using SXT in correlation with other imaging techniques, making it accessible and efficient for early-career researchers to rapidly correlate cellular structure with function. The synergy of correlative light, electron, and X-ray microscopy offers numerous benefits.
Objective
Correlative multimode imaging is the only way to reveal a composite view of a biological sample with the multidimensional information about its macro-, meso- and microscopic structure, dynamics, function and chemical composition that is required in order to understand biomedical processes and diseases.
Project CLEXM addresses an urgent need to demonstrate, promote and disseminate the benefits of this technique in the fields of disease and drug therapy research and especially to early-career researchers.
The premise of project CLEXM is that there is a growing need for disease and drug therapy researchers to understand the linkages between structural and functional changes that occur in a cell and to be able to observe these from the cellular (micrometre) to the molecular (nanometre) scale. Correlative Light and Electron Microscopy (CLEM) is the current state-of-the-art for achieving this, but the technique is extremely complex and slow. CLEXM postulates that the integration of a third imaging modality, Soft X-ray Tomography (SXT), into CLEM will make it easier and faster for researchers to correlate cellular structure with cellular function.
Correlative Light, Electron and X-ray Microscopy (CLEXM) can be combined in a number of ways and the benefits will be demonstrated in a number of different use cases. This would be too difficult and too much to achieve as a single research project or as a single MSCA Postdoctoral Fellowship, however, it lends itself to be most easily achieved as a network of complementary individual projects, under an MSCA Doctoral Network action.
The overarching objective of project CLEXM is to provide high-level training in the field of correlative multimode imaging to a new generation of doctoral candidates to provide them with the transferrable skills necessary for thriving careers in a high-growth area that will aid researchers in their quest to understand disease and to develop effective therapies.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
You need to log in or register to use this function
Keywords
Programme(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Funding Scheme
HORIZON-TMA-MSCA-DN - HORIZON TMA MSCA Doctoral NetworksCoordinator
4 Dublin
Ireland