Project description
Thermochemical conversion for sustainable biofuel production
The EU-funded BioTheRoS project aims to promote sustainable biofuel production through two innovative thermochemical conversion processes, i.e. pyrolysis upgrading via hydrodeoxygenation, and Fischer-Tropsch synthesis from biomass gasification. The project will bring together important players on a European and international scale, including technological/social specialists, RES-oriented associations, and industrial stakeholders. AI-based predictive demand models will be developed to select the most promising feedstock in terms of biomass availability/quality and cost-effectiveness of the entire supply chain. The efficiency of biofuel production pathways will be evaluated in terms of sustainability (environmental, economic, social) throughout the joint application of a holistic life cycle framework and multi-criteria decision-analysis techniques. Emphasis will be placed on the fundamentals and limitations to accelerate the scale-up of sustainable biofuels worldwide.
Objective
BioTheRoS Project aims at developing a holistic methodology that will boost the scale-up of sustainable biofuels via thermochemical conversion technologies. These are pyrolysis upgrading through hydrodeoxygenation and Fischer-Tropsch synthesis from biomass gasification. The project will bring together key actors at a both European and International level, such as technological and social experts, renewable energy-oriented associations along with industrial experts that will bring and exchange their knowledge in order to reach the project targets. Within the project, several non-food biomass feedstock will be analyzed and optimized across their entire value chain. Barriers linked with the selected feedstocks supply and pretreatment will be identified. Furthermore, AI-based predictive models will be developed, in order to be adapted to the scale-up cases. Then, the most promising biomass feedstock will be tested experimentally in the studied thermochemical reactors. At this point of the project, technical constraints and opportunities for the scale-up of the sustainable biofuels thermochemical processes will be identified. Possible synergies of blending pyrolysis oil and gasification based advanced biofuels will be investigated by a potential end-user (petroleum company). The selected data will be used as an input for advanced modelling tools, including process modelling, CFD tools and LCA/LCC/sLCA tools results of which will feed a multi-criteria analysis to derive generalized up-scaling rules and guidelines of the produced biofuels. The engagement of several stakeholders in the planning of the scaling-up of sustainable biofuels production will be crucial at this point, since they will review the project results and assess if a biofuel production technology can be delivered from the lab/pilot to a larger-scale, by taking into account operational difficulties, plant cost and plant capacity limitations (technological barriers).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering energy and fuels fossil energy petroleum
- engineering and technology industrial biotechnology biomaterials biofuels
- agricultural sciences agricultural biotechnology biomass
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.5 - Climate, Energy and Mobility
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.5.2 - Energy Supply
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-RIA - HORIZON Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-CL5-2022-D3-03
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
57 001 THERMI THESSALONIKI
Greece
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.