Project description
Drug formation optimisation and prediction with machine learning
The efficient and precise development and prediction of crystalline forms with specific physicochemical properties are crucial for the pharmaceutical industry. However, this process is one of the most complicated and risky, as researchers must identify the best crystalline forms for a mix of ingredients to avoid interconversion, which could lead to drastic changes in the drug’s efficacy, solubility, and bioavailability. The ERC-funded MACHINE-DRUG project aims to develop a novel machine-learning methodology that could accelerate the prediction process for crystal structures by a factor of 100, enabling researchers to anticipate complications that may emerge over time and use the optimal formulation for each drug.
Objective
Correctly developing and predicting crystalline forms with specific physico-chemical properties is essential to the pharmaceutical industry. The main challenge this industry faces is the fact that most active pharmaceutical ingredients in most drugs can interconvert into a different (usually more stable) polymorph, potentially reducing the solubility of the drug, slowing down the release of the API and affecting the pharmacokinetics, bioavailability and efficacy of the drug. For instance, due to the complex interplay between thermodynamics and kinetics, it often happens that unexpected polymorphs emerge either in development (best case scenario) or long after the drug has been approved for market (worst case scenario). A previously known stable form that disappears or the sudden appearance of an even more stable form can have grave consequences. For instance, the new form may have new properties that are not suitable for the intended purpose of the drug, leading to significant economic and public health repercussions. This ERC Proof of Concept project aims to implement new machine learning approaches that would allow to accelerate the process of predicting crystal structures by a factor of 100, thereby making it sustainable and enabling industry to investigate other crystal structures of the same drug to find the most suitable formulation (e.g. hydrates, salts, co-crystals, etc). Beyond pharma (which is our target application for MACHINE-DRUG), polymorphism of chemical structures has significant importance across many other different industries. For instance, the polymorphism of a pigment can generate a different colour, or the polymorphism of a chemical structure can lead to a material with significantly different properties (thermal, plastic, etc.). As such, MACHINE-DRUG is a lean, targeted project with a clear scope, but its potential applications are limitless.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering colors
- natural sciences physical sciences thermodynamics
- medical and health sciences basic medicine pharmacology and pharmacy pharmacokinetics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC-POC - HORIZON ERC Proof of Concept Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-POC
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
4365 ESCH-SUR-ALZETTE
Luxembourg
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.