Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

biomimetic engineered chordae tendineae for valve repair and regeneration

Project description

Mitral valve repair with regenerative technology

Heart diseases, particularly those affecting the mitral valve, are a leading cause of death globally, especially among people over 65. Mitral valve regurgitation, caused by damage to the valve’s chordae tendineae (CT), impacts millions of people. The current treatment involves replacing damaged CT with expanded polytetrafluoroethylene (ePTFE). However, this method can lead to complications such as rupture and calcification. The ERC-funded BioChord project offers a groundbreaking alternative: a polymeric bioengineered regenerative CT. BioChord aims to repair the valve and then gradually integrate with the patient’s tissue, transforming into a functional structure that mimics natural CT and provides long-term mechanical support to the heart.

Objective

The human heart is among those organs suffering from a limited capacity to self-regenerate. Heart diseases continue to be a leading cause of mortality with suboptimal therapeutic options. Thus, deploying new therapeutic strategies for tissue repair is a primary objective in modern cardiac medicine. Valvular heart diseases, such as those related to the Mitral Valve (MV), are the leading causes of cardiovascular morbidity and mortality worldwide, affecting 5.1% of the 65+ years old population. In particular, MV regurgitation, one of the most common valvopathies, affects over 24 million people worldwide. Since the fundamental nature of MV regurgitation is mechanical, caused by physical, irreversible damage to the restraining force structures of the valvular apparatus, the only effective treatment is limited to the surgical approaches that include MV repair or replacement. However, when the regurgitation is due to Chordae Tendinae (CT) elongation or rupture, several studies have demonstrated the substantial advantages of MV repair, using a substitute for the damaged CT vs. MV replacement. Currently, the expanded polytetrafluoroethylene (ePTFE) has become the standard approach in CT repair/replacement1. However, several complications (rupture, calcification, detachment, fibrosis, and slippage) have been observed. Hence, there continues to be an urgent need to develop better MV repair techniques that are simple, effective, and durable. In this proposal, we intend to further advance and validate BioChord, the first ever polymeric bioengineered regenerative CT, designed to first repair the MV by replacing the diseased CT, providing mechanical support to the valvular apparatus, then to be restored by the patient tissue, progressively becoming a functional tendon-like structure that, as a native CT, while connecting the valve leaflet to the papillary muscle, will sustain the valvular apparatus with blood and nutrients.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC-POC - HORIZON ERC Proof of Concept Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2023-POC

See all projects funded under this call

Host institution

FONDAZIONE RI.MED
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 150 000,00
Address
VIA BANDIERA 11
90133 Palermo
Italy

See on map

Region
Isole Sicilia Palermo
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0