Descripción del proyecto
Superación de las limitaciones de la microscopía electrónica
La microscopía electrónica (ME) ha ofrecido beneficios cruciales en varios sectores, desempeñando un papel clave en los descubrimientos revolucionarios de nuevos materiales y haciendo avanzar nuestra comprensión del papel que desempeñan las estructuras defectuosas y las interfaces en las propiedades y el comportamiento de los materiales. Sin embargo, la investigación con ME está limitada actualmente al estudio de las interfaces agua-sólido debido a la sensibilidad de las muestras acuosas al haz de electrones. El proyecto DREAM-SWIM, financiado por el Consejo Europeo de Investigación, tiene como objetivo desarrollar nuevos instrumentos y metodologías para el estudio de muestras acuosas, que permitan evaluar en profundidad las interacciones entre el haz de electrones y los procesos, materiales y soluciones acuosas. Ello facilitará el desarrollo de experimentos de ME innovadores que superen las limitaciones anteriores.
Objetivo
Electron microscopy (EM) has played a key role in the discovery of many new materials, as well as the elucidation of the role of defect structures and interfaces on material properties and behaviour. Current electron microscopes are capable of maintaining the relevant hydrated state of samples by means of cryofixation techniques or by using dedicated liquid cells. This opens up the possibility of investigating crucial interfaces, such as those in complex aqueous systems that, despite their significance, remain poorly understood. The study of water-solid interfaces in the EM is currently limited by the sensitivity of aqueous samples and interfaces to the action of the electron beam. Knowledge of the fundamental chemical processes induced by interaction with the electron beam is needed for the interpretation of results, prediction and design of experiments and to potentially mitigate electron-beam effects. Here, I propose to develop novel instrumentation and approaches to allow for the direct determination of the yields of radicals and molecules produced as well as reaction kinetics in the EM and at the interface between materials and aqueous solutions. This new concept will permit us to precisely assess the effect of important factors in the radiolysis of aqueous solutions inside the EM such as the very high electron dose rates, the supports, liquid volume, temperature or the effect of nanomaterials’ interfaces. This newly accessible knowledge will lead to the interpretation of numerous EM experiments and will be used to develop novel data-informed adaptive scanning approaches specifically designed for in situ dynamic acquisition with minimal chemical effects in the samples. An important goal of this project is to conceive new predictive models for the radiolytic chemistry produced during EM experiments, which will open the door to the future design of mitigation procedures for radiolysis damage in EM.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- ciencias naturalesciencias físicasópticamicroscopía
- ingeniería y tecnologíananotecnologíananomateriales
- ciencias naturalesciencias químicasquímica nuclearquímica de la radiación
Para utilizar esta función, debe iniciar sesión o registrarse
Palabras clave
Programa(s)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Régimen de financiación
HORIZON-ERC - HORIZON ERC GrantsInstitución de acogida
75794 Paris
Francia