Project description
Exploring high-temperature topological superconductivity in twisted 3D nanoarchitectures
Topological superconductors are an exotic state of matter characterised by a superconducting gap in the bulk material and topologically protected gapless surfaces or edges. They are a promising platform for topological quantum computation. Topological superconductivity may be attainable with a small twist in the relative crystal orientation of 2D superconductors. Funded by the European Research Council, the 3DCuT project aims to explore this using twisted cuprate ultra-clean interfaces. The project intends to develop microdevices and nanodevices along with techniques to fabricate and control cuprate van der Waals twisted heterostructures in 3D nanoarchitectures. These innovative experimental tools will enable a deeper understanding of topological superconductivity at high temperatures and support applications in quantum computation, metrology, communication and more.
Objective
2D superconductors can be used to build ultra-clean interfaces for Josephson junctions, the superconducting analog of a transistor. A small twist in the relative crystal orientation of 2D superconductors could become a new platform for topological superconductivity, an exotic state of matter that holds great promise for quantum computing at high temperatures. Based on my methodological developments for the realization of twisted cuprate ultra-clean interfaces, the field is rapidly evolving, and these interfaces are now the leading candidate for the implementation of high-temperature topological superconductivity. However, the combination of well-controlled twisted cuprate heterostructures and complex circuits calls for new experimental methodologies.
3DCuT will develop micro/nanodevices and techniques to fabricate and control cuprate van der Waals twisted heterostructures in three-dimensional nanoarchitectures: 1) We will develop novel fabrication tools to integrate complex thermal and superconducting circuits in fragile twisted cuprate bilayers. We will explore if a topological gap opens near ´magic´ angles in twisted bilayers by studying the Josephson effect. 2) We will fabricate trilayers cuprate heterostructures with different twist angle symmetries, where the topological gap is amplified and time-reversal symmetry broken states appear across a wide range of angles. 3) We will create a heterostructure between a superconducting cuprate twisted heterostructure and a topological insulating crystal, allowing us to create a chiral Majorana edge mode. At the end of this project, we will have provided a brand-new solid-state tool for emerging quantum technologies in computation, metrology, secure communication, single-photon imaging, methodologies for the entire field of 2D materials, and a comprehensive understanding of the governing principles and ingredients for topological superconductivity at high temperatures.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80138 Napoli
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.