Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Creating water-smart landscapes

Description du projet

Ouvrir la voie à des pratiques agricoles durables

Avec l’augmentation de la population mondiale, les activités agricoles s’intensifient, entraînant une augmentation de l’utilisation d’engrais et des émissions diffuses d’éléments nutritifs. Cette tendance croissante constitue une menace importante pour les masses d’eau, car le ruissellement des nutriments provenant des pratiques agricoles intensives dégrade la qualité de l’eau. Les méthodes traditionnelles de gestion des terres et des eaux manquent souvent de la précision nécessaire pour identifier les zones prioritaires ou proposer des solutions spatialement explicites. Dans ce contexte, le projet WaterSmartLand, financé par le CER, mettra en évidence les zones à haut risque et proposera des solutions ciblées. Grâce à des analyses avancées, à la modélisation et à l’apprentissage automatique, le projet identifie des stratégies optimales de gestion des terres, telles que l’utilisation de zones humides et de bandes tampons riveraines, afin d’atténuer le ruissellement des nutriments. En exploitant un cube de données discret du réseau mondial et des techniques d’apprentissage automatique de pointe, le projet propose des solutions spatialement explicites.

Objectif

With the growing human population, the diffuse nutrient emissions from agriculture are expected to increase with the rise of fertilizer use. This situation has created a need for sustainable intensification by increasing yields while simultaneously decreasing the environmental impacts. Nature-based solutions (NbS) such as wetlands and riparian buffer strips can efficiently reduce the nutrient runoff from agricultural catchments. However, most land and water management studies mostly do not identify specific priority areas where the nutrient runoff to the water bodies is the highest (hotspots) nor do they provide spatially explicit solutions to improve the environmental conditions. Identification of priority areas will be important for ensuring cost-effective interventions to reduce the impact of intensive agriculture.
The aim of the proposed project is to develop an analysis, modelling, and machine learning (ML) framework for finding spatially optimal land management scenarios for implementing NbS such as wetlands and riparian buffer strips to reduce agricultural nutrient runoff from catchments at different scales. Moreover, the project will identify the landscape predictor variables at different spatial scales for nutrient concentrations and their cross-scale interactions using ML.
We will implement a novel Discrete Global Grid System data cube to manage all environmental data needed for modelling. We will take advantage of the strength and flexibility of existing ML methods to deal with complex ecosystem responses, and to reveal new interactions among water quality predictor variables. ML together with geospatial analysis will help us to develop different spatially explicit NbS allocation scenarios which we will evaluate with process-based hydrological modelling. In addition, we will address the challenges of processing large datasets by using proven parallelisation and distributed computing toolkits.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-ERC - HORIZON ERC Grants

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2023-COG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

TARTU ULIKOOL
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 909 500,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 909 500,00

Bénéficiaires (1)

Mon livret 0 0