Project description
Simulating complex interactions between quantum systems and the environment
Isolated quantum systems have shed important light on quantum processes thanks to their controlled environments. However, applications necessarily involve interactions with the environment. Interestingly, these interactions and the resulting energy relaxation and decoherence can lead to novel phenomena and opportunities. The non-equilibrium relaxation dynamics modulated by non-Markovian memory and strong interaction with the environment are a prime example. The ERC-funded NG-Quapi project aims to develop computational methods to facilitate simulations of condensed-phase quantum dynamics in complex systems and environments, enabling access to simulations that are otherwise infeasible with classical computing. The resulting numerical-path-integration software platform will enable researchers to address the effects of system-environment interactions on coherence, the underlying mechanisms, and potential control strategies.
Objective
The inevitable interaction of a quantum system with the environment leads to energy relaxation and decoherence which can result in novel phenomena and opportunities not present in isolated quantum systems. Of particular interest is the non-equilibrium relaxation dynamics subject to non-Markovian memory and at strong interaction with the environment. In such situations, novel and generally applicable computational methods are necessary for precise and reliable simulations of the many body dynamics of open quantum systems.
For this purpose, a hierarchy of methodological developments is proposed within the framework of the quasi-adiabatic propagator path integral (Quapi) method that address (i) the generalization of the method to more complex environments, (ii) its numerical efficiency and scalability, and (iii) employ neural networks to leverage algorithm performance. Finally, (iv) a quantum algorithm-based strategy is pursued for accelerated numerical propagation algorithms on near-term quantum devices. The hierarchy of developments facilitates simulations of condensed phase quantum dynamics for more complex systems and ever complex environments to address highest relevance open questions and research objectives in the understanding of condensed phase quantum dynamics, specifically, if the interactions of a system with its environment potentially can affect the systems coherence, the underlying mechanisms leading to complex many body phenomena and the possibility of control of the system dynamics and its decoherence.
Ultimately, the algorithm developments and novel conceptual approaches will yield a comprehensive numerical path integration software platform for condensed phase quantum dynamics simulations that has groundbreaking potential by facilitating extremely challenging simulations that are not yet possible on classical computers or only envisioned on tailor made quantum devices.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences software
- natural sciences physical sciences quantum physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.