Objective
The transition towards a society based on 100% renewable energy requires massive deployment of photovoltaics of 30-70 TW until 2050. This requires huge amounts of resources, while their limited availability is already becoming apparent. A major lever to reduce resource consumption is to increase the solar cell efficiency. As best single junction solar cells approach their fundamental limits, higher efficiency can only be reached with so-called tandem solar cells, made of two or more subcells. All tandem technologies so far are based on relatively thick absorber layers, reducing resource demand compared to single junction devices by efficiency increase. There, light trapping strategies are used to maximize absorptance close to the band gap of the materials and improve efficiency by few percent relative. However, by applying advanced light trapping techniques such as nanophotonic metasurfac-es, ultrathin single junction devices with a 5-10-fold decrease in semiconductor material were realized. To reduce resource demand further, the concept of ultrathin solar cells must be extended to tandem devices. This introduces severe challenges, as not only absorption needs to be maximized within the active part, but a spectrally dependent light guiding strategy is required. Metasurfaces have shown the ability to manipulate light e.g. spectrally dependent; however, they have never been implemented into tandem solar cells. Thus, the overarching goal of PHASE is to generate a deep physical understanding of metasurfaces for ultrathin tandem solar cells and to develop process flows to implement nanopho-tonic structures into such devices with efficiencies above 30%. This will proof that the chosen tech-nology pathway can support the urgently needed energy transition. More specific, the goal of PHASE is to realize tandem solar cells, where the resource demanding semiconductor part is 10 times thinner (and thus needs 10 times less semiconductor material) than similar existing devices.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- engineering and technology environmental engineering energy and fuels renewable energy solar energy photovoltaic
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
79098 Freiburg
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.