Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Quantum reservoir computing for efficient signal processing

CORDIS fournit des liens vers les livrables publics et les publications des projets HORIZON.

Les liens vers les livrables et les publications des projets du 7e PC, ainsi que les liens vers certains types de résultats spécifiques tels que les jeux de données et les logiciels, sont récupérés dynamiquement sur OpenAIRE .

Livrables

Report on point defect quantum systems in the presence of input-output signal and intrinsic decoherence and ambient noise (s’ouvre dans une nouvelle fenêtre)

A range of point defect-based structures will be fabricated. A comprehensive set of experiments will be conducted to determine their behaviour in a wide range of conditions. Results will be systematized, analysed and reported to improve the quantitative defect-based QR model (D1.4).

Project logo and website and social media accounts (s’ouvre dans une nouvelle fenêtre)

A project logo and website will be prepared and made available on the internet. This short report will describe the logo and website structure and main characteristics. Also, social media accounts (Twitter, LinkedIn) will be created to disseminate project news, which will be described in the short report.

Quantitative model of defect-based QR (s’ouvre dans une nouvelle fenêtre)

A mathematical description of a quantum reservoir (QR) structure comprising several defect-based quantum bits will be developed, under realistic assumptions about its design and its environment. Based on this description, a numerical model of the system will be built, which will allow to make quantitative predictions of the behaviour of the QR in the presence of the external signal, controls, and ambient noise. The model will be used to simulate the QR in a wide range of parameters in order to find the optimal design parameters and the regime of its operation (D3.1-3), and to train the software-implemented neural network (D4.1).

Quantitative model of superconducting QR (s’ouvre dans une nouvelle fenêtre)

A mathematical description of a quantum reservoir (QR) structure comprising several superconducting quantum bits will be developed, under realistic assumptions about its design and its environment. Based on this description, a numerical model of the system will be built, which will allow to make quantitative predictions of the behaviour of the QR in the presence of the external signal, controls, and ambient noise. The model will be used to simulate the QR in a wide range of parameters in order to find the optimal design parameters and the regime of its operation (D2.1-4), and to train the software-implemented neural network (D4.1).

Dissemination and communication plan - initial version (s’ouvre dans une nouvelle fenêtre)

A report documenting the Dissemination and Communication Plan over the course of the project.

Fabricated and optimised and tested 5-qubit QR (s’ouvre dans une nouvelle fenêtre)

A 5-qubit superconducting QR will be designed and fabricated, tested and characterised. Results will be analysed and reported to improve the quantitative superconducting QR model (D1.3).

Software implementation of neural network for QRC (s’ouvre dans une nouvelle fenêtre)

A numerical model of a neural network for the processing of a QR output will be developed. Corresponding software will be developed and tested using the inputs from quantitative models as well as from actual experimental QR implementations.

Publications

Computing on the verge of chaos: classical and quantum reservoirs (s’ouvre dans une nouvelle fenêtre)

Auteurs: Didier Felbacq, Emmanuel Rousseau, Emmanuel Kling
Publié dans: Active Photonic Platforms (APP), 2024
Éditeur: Active Photonic Platforms (APP)
DOI: 10.1117/12.3027578

Hysteresis and self-oscillations in an artificial memristive quantum neuron (s’ouvre dans une nouvelle fenêtre)

Auteurs: Finlay Potter, Alexandre Zagoskin, Sergey Savel'ev, Alexander G. Balanov
Publié dans: Physical Review A, Numéro 110, 2024, ISSN 2469-9926
Éditeur: American Physical Society (APS)
DOI: 10.1103/PhysRevA.110.042604

Hysteresis and self-oscillations in an artificial memristive quantum neuron (s’ouvre dans une nouvelle fenêtre)

Auteurs: Finlay Potter, Alexandre Zagoskin, Sergey Savel'ev, Alexander G. Balanov
Publié dans: Physical Review A, Numéro 110, 2024, ISSN 2469-9926
Éditeur: American Physical Society (APS)
DOI: 10.1103/PHYSREVA.110.042604

A Coherence-Protection Scheme for Quantum Sensors Based on Ultra-Shallow Single Nitrogen-Vacancy Centers in Diamond (s’ouvre dans une nouvelle fenêtre)

Auteurs: Anton Pershin, András Tárkányi, Vladimir Verkhovlyuk, Viktor Ivády, Adam Gali
Publié dans: 2025
Éditeur: arXivLabs
DOI: 10.48550/ARXIV.2501.00180

Recherche de données OpenAIRE...

Une erreur s’est produite lors de la recherche de données OpenAIRE

Aucun résultat disponible

Mon livret 0 0