Project description
Sensor-based personalised health monitoring
Research in decentralised personal health monitoring (DPHM) focuses on long-term monitoring, reducing motion artifacts, and multimodal monitoring. The EU-funded PERSIMMON project will develop personalised biodegradable smart sensor patches using low-cost additive manufacturing. It will introduce new sensor materials, AI technology, and digital surface mount technology. These patches will be used for advanced DPHM, cloud-based AI sensor fusion for monitoring blood pressure and body temperature, and edge-AI to reduce motion artifacts and power consumption. Over 48 months, the project will demonstrate remote DPHM in ski mountaineering and swimming use cases, continuously monitor chronically ill patients, establish a production line for additive manufacturing of printed wiring boards, and develop a 5G gateway for body-worn IoT.
Objective
Today, the main research trends in decentralized personal health monitoring (PDHM) are on monitoring at longer periods, reducing motion artefacts, and multimodal monitoring. PERSIMMON will push the state-of-the-art by providing personalized and biodegradable multimodal smart sensor patches based on low-cost additive manufacturing. The innovations introduced by PERSIMMON rely on new sensor materials, AI, and digital surface mount technology (SMT). The developed patches will be used in multinodal networks with multimodal nodes on the skin for advanced DPHM, with improved sustainability and circularity. Cloud-based AI sensor fusion will be used for blood pressure and body temperature monitoring, and edge-AI for reducing motion artefacts, selecting good signal conditions, and reduce power consumption at the smart patch. In addition, PERSIMMON will develop new sensor materials for biodegradability, sensor electrodes, and nano-MOS embedded in semi-permeable materials (that will allow gas sensors on the skin with both extended lifetime in multiuse modules and at extreme low cost in disposables). Within 48 months and with the involvement of 13 partners from six countries, PERSIMMON will demonstrate remote DPHM in sport use cases of ski mountaineering and swimming, and in continuous remote monitoring of chronically ill patients in their everyday lives. A production line for additive manufacturing of soft and compliant printed wiring boards based on digital SMT manufacturing, and a 5G gateway for body worn IoT will be demonstrated and made as business cases. The used water-soluble biopolymers and liquid metal interconnects and contacts remove microplastics waste and allow for reuse of clean components and recycled metal without high-temperature or toxic processing. Life cycle analysis, societal uptake, acceptance, and compliance to a circular economy are indeed at the methodological basis of the design and development of new devices and of the appliance tests in PERSIMMON.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences internet internet of things
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- natural sciences earth and related environmental sciences environmental sciences pollution
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.4 - Digital, Industry and Space
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.4.4 - Advanced Materials
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-RIA - HORIZON Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-CL4-2023-RESILIENCE-01-TWO-STAGE
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
751 05 Uppsala
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.