Project description
Bio-inspired artificial respiration devices
Acute respiratory distress syndrome (ARDS) is a severe lung condition characterised by rapid onset of inflammation in the lungs, causing fluid buildup and impaired oxygen uptake. Existing therapies like mechanical ventilation and extracorporeal membrane oxygenation (ECMO) exhibit high risks. ECMO uses synthetic hollow fibre membranes to replace lung function but falls short with regard to efficiency and haemocompatibility. Funded by the European Innovation Council, the BioMembrOS project proposes to mimic the respiration of birds and fish for a more effective biomimetic approach against ARDS. Researchers will develop membrane structures that offer improved haemocompatibility and gas permeability. Collectively, the work is expected to revolutionise artificial respiration devices.
Objective
Acute respiratory distress syndrome (ARDS) is currently seen in huge numbers of patients worldwide due to the COVID-19 pandemic,
but also before that, respiratory diseases were the third largest cause of death in the EU. Current therapy for respiratory failure
includes mechanical ventilation and extracorporeal membrane oxygenation (ECMO) both associated with high morbidity and
mortality. In ECMO devices the functionality of the lungs tissue membranes that are responsible for gas exchange during breathing is
usually taken over by bundles of synthetic cylindrical hollow fiber membranes. Geometries and transport characteristics of standard
hollow fiber membranes are not suitable for re-building the structurally complex and dynamic contracting microstructure of the
mammalian lung and consequently, artificial devices to assist/replace respiration still face major limitations in size, flow characteristics
and hemocompatibility that impede the development of efficient intracorporeal devices. In BioMembrOS, we want to follow a
groundbreaking new biomimetic approach, and replicate main characteristics of the most effective respiration found in vertebrates,
mainly birds and fish, in order to develop membrane structures that will serve as key elements for a novel generation of artificial
respiration devices. To reach this goal, we will a) optimize geometry of the membrane structure by mimicking microstructure of the
gills of fish to increase outer surface per membrane area, mimicking globular shape of the gas transporting inner lumen and
interconnected arrangement of membrane fibers of avian respiration; b) design and control flow characteristics and boundary layer
applying μPIV experimental flow investigations and structural design optimization; c) design and synthesize bi-soft segment
polyurethane membranes with increased hemocompatibility and gas permeability with phase inversion; and d) verify and benchmark
the boosted mass transfer capabilities by in-vitro blood tests
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering fibers
- social sciences sociology demography mortality
- medical and health sciences health sciences public health epidemiology pandemics
- natural sciences chemical sciences polymer sciences polyurethane
- natural sciences mathematics pure mathematics geometry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.3.1 - The European Innovation Council (EIC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-EIC - HORIZON EIC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-EIC-2023-PATHFINDEROPEN-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1040 Wien
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.