Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Novel SOE architectures for hydrogen production

Project description

Solid oxide electrolysis concept for hydrogen production

Green hydrogen stands as a cornerstone for a decarbonised economy, with solid oxide electrolysis (SOEL) emerging as an efficient method for its production. SOEL boasts electrical efficiencies nearing 100 %, using non-noble materials, and offers operational flexibility. However, to achieve commercial viability, challenges such as enhancing lifetime, mitigating degradation, addressing ceramic brittleness, and reducing scaling costs must be tackled. In this context, the EU-funded NOAH2 project will develop a cost-effective, durable, and flexible hydrogen production stack concept. It aims to improve the performance of solid oxide cells and stacks beyond the state-of-the-art while minimising the use of critical raw materials. The NOAH2 stack architecture will adopt a metal-based monolithic concept with infiltrated electrodes.

Objective

Hydrogen is a key energy vector in a future decarbonised economy. Large-scale application in numerous sectors, such as transport, iron & steel plants, and the chemical industry, requires efficient and sustainable production routes of green hydrogen. Electrolysis of water/steam using electricity from renewable sources like wind and solar is the solution. High temperature or solid oxide electrolysis (SOEL) has significantly attractive features, which allow for lower CAPEX and OPEX, thus facilitating commercial breakthrough: High electrical efficiencies approaching 100%, cost competitive, non-noble materials, and operational flexibility. SOEL challenges that need to be solved are increase of lifetime and reduction of degradation for realistic applications, the ceramic brittleness of most mature SOEL configurations, which challenge rapid operational strategies when integrated with renewable energy sources, and scaling costs for the required Mega to Gigawatt volumes.
NOAH2 aims at overcoming these challenges. The overall goal of the NOAH2 project is to provide a robust, cost-competitive, flexible, and durable stack concept for hydrogen production at intermediate temperatures through innovative electrode, cell, and stack designs. NOAH2 will boost the electrolysis performance of solid oxide cells & stacks significantly beyond State-of-the-Art (SoA) through a combination of optimised structures and highly active materials, with a focus on reducing critical raw materials (CRM) and manufacturability using well-established large scale routes for solid oxide technology. The NOAH2 stack architecture relies on a metal based monolithic concept with infiltrated electrodes.
NOAH2 will outline a path towards commercialisation, provide a sustainability classification with emphasis on substituting CRM, provide an assessment of commercialization potential compared to SoA SOEL, PEM, and Alkaline electrolysers, and identify potential industrial players for high-volume manufacture.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-JU-RIA - HORIZON JU Research and Innovation Actions

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-JTI-CLEANH2-2023-1

See all projects funded under this call

Coordinator

DANMARKS TEKNISKE UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 829 625,00
Address
ANKER ENGELUNDS VEJ 101
2800 Kongens Lyngby
Denmark

See on map

Region
Danmark Hovedstaden Københavns omegn
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 829 625,00

Participants (4)

Partners (2)

My booklet 0 0