Objective
i-TED is a gamma-ray imaging system that was fully developed and successfully applied for nuclear astrophysics experiments at CERN n_TOF in the previous HYMNS ERC CoG. i-TED was designed for highest possible detection sensitivity, and it is also characterized by its modularity, portability and low sensitivity to neutron-induced backgrounds. These characteristics make the developed system potentially very attractive for several emerging applications in health and life science. Indeed, Compton imagers are expected to provide a breakthough innovation potential in the fields of i) ion-range monitoring in hadron therapy, ii) intraoperative Radio-Guided Surgery (RGS), iii) dose-monitoring in boron-neutron capture therapy (BNCT), and iv) theranostics (radioisotopes that serve for both therapy and diagnostics). Thus, the aim of this POC proposal is to perform first proof-of-concept measurements with readily available i-TED Compton cameras for demonstrating their applicability and advantages in two of these fields: (ii) intraoperative RGS and (iii) neutron dose assessment in BNCT. We also aim at addressing the corresponding technical-readiness levels (TRLs) for each application, which seems the most convenient approach for an efficient transfer of the developed technology towards society.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensorsoptical sensors
You need to log in or register to use this function
Programme(s)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Funding Scheme
HORIZON-ERC-POC - HORIZON ERC Proof of Concept GrantsHost institution
28006 Madrid
Spain