Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Artificial Intelligence and Machine Learning for Enhanced Representation of Processes and Extremes in Earth System Models

Description du projet

Un nouveau regard sur les prévisions relatives au changement climatique

La progression du réchauffement planétaire pose des défis qui exigent des solutions scientifiques urgentes. Les modèles du système terrestre, essentiels pour anticiper le changement climatique, comportent des incertitudes inhérentes à leurs prévisions. L’objectif principal du projet AI4PEX, financé par l’UE, est de lever ces incertitudes en améliorant les modèles du système terrestre. Le projet abordera les principaux facteurs d’incertitude en s’appuyant sur l’apprentissage automatique et l’IA. En combinant les observations avec ces technologies de pointe, AI4PEX entend «apprendre»et modéliser avec précision les processus complexes qui dégradent notre confiance dans les prévisions climatiques. Par le biais d’une approche pluridisciplinaire, le projet se propose d’améliorer la précision des modèles du système terrestre, ce qui est essentiel pour anticiper les futurs extrêmes climatiques et leurs impacts sur la société.

Objectif

Global warming continues at an alarming rate, presenting unprecedented challenges to society that require urgent, science-led mitigation and adaptation. Earth system models (ESMs) are essential tools for projecting climate change, providing important information to decision makers. However, confidence in predicted climate change is undermined by a number of uncertainties; (i) ESMs disagree on how much the Earth will warm for a given increase in atmospheric carbon dioxide (CO2) (Earth’s equilibrium climate sensitivity); (ii) how much emitted CO2 will stay in the atmosphere to warm the planet (half the CO2 emitted by humans has been absorbed by the land and ocean) and (iii) how much excess heat in the Earth system will enter the ocean interior, delaying surface warming (~90 % of the heat in the Earth system goes into the ocean). Central to these uncertainties are poorly understood, and poorly modelled, Earth system feedbacks, in particular cloud feedbacks, carbon cycle feedbacks and ocean heat uptake. Poor representation of these phenomena degrades the accuracy of ESM projections, with implications for anticipating future climate extremes and societal impacts. We aim to improve the representation of these feedbacks in ESMs, reducing uncertainty in global warming projections. We propose a multidisciplinary approach, focused on “learning” how to accurately describe processes underpinning these feedbacks, through a fusion of observations with advanced machine learning (ML) and artificial intelligence (AI). Such data and approaches, constrained by the laws of physics, will deliver a step change in the accuracy of Earth system models.
AI4PEX will place Europe at the forefront of a revolution in Earth system modelling, leading to increased accuracy of climate change projections and superior support for implementation of the Paris Climate Agreement and the European Green Deal.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-RIA - HORIZON Research and Innovation Actions

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) HORIZON-CL5-2023-D1-01

Voir tous les projets financés au titre de cet appel

Coordinateur

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 774 131,25
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Participants (13)

Partenaires (5)

Mon livret 0 0