Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Skill Performance Estimation from cARdiac Signals

Descripción del proyecto

Aprovechar las señales cardíacas para un entrenamiento físico personalizado

En diferentes entornos de aprendizaje, las capacidades y motivaciones individuales varían, lo que pone en entredicho la eficacia de los métodos de formación estandarizados. La bibliografía científica destaca el potencial de las señales cardíacas (SC) para medir los estados cognitivo y físico, que son fundamentales para las experiencias de aprendizaje a medida. En este contexto, el proyecto SPEARS, financiado por el Consejo Europeo de Investigación, utilizará SC para la adaptación dinámica a los estados cognitivo y físico de los usuarios. Capitalizando el éxito del proyecto BrainConquest, que se centró en el entrenamiento personalizado a través de interfaces cerebro-ordenador, SPEARS pretende mejorar los algoritmos de aprendizaje automático y procesamiento de señales para, de este modo, predecir el rendimiento con datos de SC suministrados por sensores comerciales como los relojes inteligentes. El objetivo de SPEARS es integrar su tecnología predictiva en una aplicación de entrenamiento deportivo, ofreciendo soluciones de entrenamiento personalizados para deportistas de resistencia de todo el mundo.

Objetivo

In any learning situation, be it math education, language learning or sport training, different learners have different abilities, motivations and capacities at any given time. Thus, an optimal learning can only be achieved with personalized training solutions, dynamically adapted to each learner’s cognitive and/or physical states. The scientific literature showed that such states could be estimated from Cardiac Signals (CS). In ERC PoC SPEARS, we thus propose to redefine consumer training apps, by enabling them to propose personalized and adaptive training plans according to an estimation of their users’ cognitive and/or physical states from their CS measured with consumer grade sensors, e.g. smartwatches. The outcome of ERC project BrainConquest should enable us to tackle this challenge. Indeed, in BrainConquest we explored such a personalized training approach for users of Brain-Computer Interfaces (BCI). In doing so, we developed Machine Learning (ML) and Signal Processing (SP) algorithms to estimate users’ mental states and predict their upcoming performances from their brain and physiological signals, including CS. In SPEARS, we thus aim at adapting, improving and assessing BrainConquest ML & SP algorithms, initially designed for BCI performance prediction from research grade brain and CS sensors in the lab, to predict cognitive and physical performance from consumer grade CS sensors in the wild. Such algorithms could be used for adaptive training apps in education, cognitive training for healthy aging or sport training. We will then explore a commercial application of this technology for sport training in particular, in collaboration with the startup Flit Sport, which sells an app for providing personalized training exercises for endurance sport athletes, based on their past performances and ML. By integrating our CS-based prediction into Flit Sport training app, we should design optimally personalized training solutions for millions of runners worldwide.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-ERC-POC - HORIZON ERC Proof of Concept Grants

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2023-POC

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 150 000,00
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Beneficiarios (1)

Socios (1)

Mi folleto 0 0