Project description
Understanding Earth’s core formation and evolution
The metallic core formed during the first 150 million years of Earth’s history, and the magma ocean solidified, setting the initial conditions for planetary evolution. Carbon, hydrogen, nitrogen, oxygen, sulphur, and noble gases are crucial for forming life molecules and controlling atmospheric properties. Obtaining experimental data on these elements in the core and the bulk silicate Earth (BSE) is challenging but essential for interpreting geophysical and geochemical observations. The ERC-funded FOREVER project will conduct laboratory experiments to measure element concentrations in Earth’s core and the BSE under conditions of core formation. It will also study how lower mantle phases controlled volatile budgets during and after magma ocean formation.
Objective
The first 150 million years of the Earths history have led to the formation of the metallic core and the solidification of the magma ocean. During this period the chemical composition of the core and the bulk silicate Earth (BSE) were defined, setting the initial conditions for subsequent planetary-scale evolution. The volatile and atmophile elements (C, H, N, O, S) and noble gases (used as tracers) compose life molecules and control key atmospheric properties, thus contributing to the definition of habitable planets. These elements are abundant at the Earths surface but the planetary interior represent a much greater reservoir. Determining C, H, N, O, S and noble gases budget in both the core and the BSE requires experimental data at the deep magma ocean conditions, which is currently challenging. However, this information is critical for interpreting geophysical and geochemical observations on the distribution and cycling of volatile compounds. Here, we will conduct laboratory experiments to quantify the concentrations of these elements (into the core and the BSE) at the conditions that prevailed during core formation. We also aim to establish how the main phases of the lower mantle controlled the volatile budget during and immediately after magma ocean times by measuring the in-situ electrical and seismic profiles of volatile-bearing minerals. The quantitative constraints from our experimental studies will then be incorporated within innovative numerical convection models to determine the effect of volatiles on the thermal, rheological and melt fraction evolution of a cooling and crystallizing magma ocean, and also on the evolution of the primordial atmosphere of planets. Finally, these experimental constraints will be combined with geochemical and cosmochemical ones to build a new generation of models in which the formation of Earth and its atmosphere is viewed within a realistic context of the formation and evolution of our solar system.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- humanitieshistory and archaeologyhistory
- natural sciencesphysical sciencesastronomyplanetary sciencesplanets
You need to log in or register to use this function
Keywords
Programme(s)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Topic(s)
Funding Scheme
HORIZON-ERC - HORIZON ERC GrantsHost institution
75794 Paris
France