Project description
AI-driven 3D with physics-based control
3D content creation involves complex processes, requiring specialised artists to create the 3D models and expensive algorithms to render the final images. Such solutions are used in industries such as digital twins, architecture, virtual reality, special effects and many others. Traditional 3D content creation uses physically-based rendering, which simulates light transport according to the laws of physics, ensuring highly accurate and realistic results – but typically at a high computational cost. By contrast, neural rendering is a powerful recent solution that uses deep learning to generate visuals based on learned representations but lacks physical accuracy and control. The ERC-funded NERPHYS project proposes to introduce novel representations and neural rendering algorithms allowing computationally efficient creation of 3D content enhanced with physics-based control.
Objective
While long restricted to an elite of expert digital artists, 3D content creation has recently been greatly simplified by deep learning. Neural representations of 3D objects have revolutionized real-world capture from photos, while generative models are starting to enable 3D object synthesis from text prompts. These methods use differentiable neural rendering that allows efficient optimization of the powerful and expressive ``soft'' neural representations, but ignores physically-based principles, and thus has no guarantees on accuracy, severely limiting the utility of the resulting content.
Differentiable physically-based rendering on the other hand can produce 3D assets with physics-based parameters, but depends on rigid traditional ``hard'' graphics representations required for light-transport computation, that make optimization much harder and is also costly, limiting applicability.
In NERPHYS we will combine the strengths of both neural and physically-based rendering, lifting their respective limitations by introducing polymorphic 3D representations, i.e. capable of morphing between different states to accommodate both efficient gradient-based optimization and physically-based light transport. By augmenting these representations with corresponding polymorphic differentiable renderers, our methodology will unleash the potential of neural rendering to produce physically-based 3D assets with guarantees on accuracy.
NERPHYS will have ground-breaking impact on 3D content creation, moving beyond today's simplistic plausible imagery, to full physically-based rendering with guarantees on error, enabling the use of powerful neural rendering methods in any application requiring accuracy. Our polymorphic approach will fundamentally change how we reason about scene representations for geometry and appearance,
while our rendering algorithms will provide a new methodology for image synthesis, e.g. for training data generation or visual effects.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
78153 Le Chesnay Cedex
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.