Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Advancing orbitronics by pushing electron orbital angular momentum to terahertz speed

Objectif

The spin angular momentum (S) of the electron has significantly extended conventional electronics, which relies on the electron charge (C), by new, so-called spintronic functionalities. Examples include magnetization switching, the transport of S and its detection, even down to femtosecond time scales. To boost the efficiency of spintronics, the so far neglected yet equally fascinating and important orbital angular momentum (L) of electrons is considered to be a powerful pathway. Orbitronic phenomena such as L-based transport, torques and magneto-optic effects have much larger magnitude than their S counterparts and may, thus, efficiently complement or even replace spintronic functionalities. Microscopically, L is completely different from S. Its dynamics involves new physics that needs to be understood, in particular on ultrafast time scales.

In the ORBITERA project, my team and I will obtain unprecedented insights into L dynamics by using femtosecond optical pulses and terahertz (THz) electric fields, which couple directly to the motion of conduction electrons at their natural frequencies and relaxation rates. We will tackle important challenges of general orbitronics and, in particular, separate L- and S-based effects despite their identical macroscopic symmetry properties, build ultrafast generators and detectors of exclusively L currents, reveal the nature of L transport (e.g. ballistic, diffusive, tunneling), measure the magnetic moments forming an L current, probe the interaction of L with the crystal lattice, temporally resolve L-S and L-C interconversion, and apply THz L torque to ultimately switch magnetic order ultrafast.

By establishing THz orbitronics, new methodology (such as ultrafast drivers of L currents and L-conductance spectroscopy at 0.1-50 THz) and applications (such as the detection of THz electric fields without relying on the weak spin-orbit coupling) will be developed that can be used by a community beyond specialized THz labs.

Régime de financement

HORIZON-ERC - HORIZON ERC Grants

Institution d’accueil

FREIE UNIVERSITAET BERLIN
Contribution nette de l'UE
€ 2 494 296,00
Adresse
KAISERSWERTHER STRASSE 16-18
14195 Berlin
Allemagne

Voir sur la carte

Région
Berlin Berlin Berlin
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 2 494 296,00

Bénéficiaires (1)