Descripción del proyecto
Aprendizaje automático para modelos robustos en la física de plasmas
Los modelos cinéticos complejos descritos por la ecuación de Vlasov se simplifican en la física de plasmas mediante el proceso de cierre para llegar a modelos de magnetofluidos. Aunque estos modelos simplificados requieren menos potencia de cálculo, tienen limitaciones en aplicaciones en las que las colisiones de partículas son poco frecuentes. El equipo del proyecto STRIDE, que cuenta con el apoyo de las Acciones Marie Skłodowska-Curie, utilizará el aprendizaje automático para crear modelos con menos grados de libertad que describan procesos cinéticos para la modelización ambiental geoespacial (GEM, por sus siglas en inglés), como la reconexión magnética. Utilizará redes neuronales profundas y descubrimiento de ecuaciones para corregir modelos de tipo fluido, que se probarán en simulaciones numéricas. En el proyecto se abordarán retos relacionados con la solidez de los modelos, la cuantificación de la incertidumbre y la generación de eventos extremos. Los modelos entrenados serán de código abierto para facilitar la investigación.
Objetivo
                                Plasma physics has seen a long tradition of deriving simplified models such as magnetohydrodynamics through a process known as closure: starting from computationally demanding kinetics and following various analytical approximate schemes resulting in fluid-type models which are less accurate but more tractable.  Due to smaller computational footprint these models have found applications in space weather modelling and fusion. The problem is that in many interesting applications, e.g. where collisions between particles are rare, the analytic closures have limitations. 
The goal of STRIDE (Systematic Techniques for Robust Inference and Data-driven Explainable closures for plasma) is to use machine learning to construct models with fewer degrees of freedom that describe kinetic processes relevant for Geospace Environmental Modelling (GEM), such as magnetic reconnection. Corrections to fluid-type models will be learned with deep neural networks and equation discovery and tested in numerical simulations. The important challenge involves understanding how such surrogates can be made robust against out-of-distribution shifts (i.e. different physical conditions) and numerical instabilities. Thus the closures will be first trained on data generated by high fidelity physics-based model, e.g. kinetic Particle-in-Cell simulations, for a specific set of parameters and then transfer learning will be applied to a different set of parameters to improve robustness. Uncertainty quantification and the ability to generate extremes will be investigated. 
The scientific question to be addressed here include: how can we interpret the trained models using explainable AI, what are the optimal ways of performing transfer learning and fine-tuning on the observational data, are there physical considerations (such as conservation laws or symmetries) that can reduce the costs associated with training such machine learning models? Trained models will be made open-source to foster research.
                            
                                Ámbito científico (EuroSciVoc)
                                                                                                            
                                            
                                            
                                                CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas:   El vocabulario científico europeo..
                                                
                                            
                                        
                                                                                                
                            
                                                                                                CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
                                Palabras clave
                                
                                    
                                    
                                        Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
                                        
                                    
                                
                            
                            
                        Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
            Programa(s)
            
              
              
                Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
                
              
            
          
                      Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
- 
                  HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
                                      PROGRAMA PRINCIPAL
                                    
Ver todos los proyectos financiados en el marco de este programa 
            Tema(s)
            
              
              
                Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
                
              
            
          
                      
                  Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
            Régimen de financiación
            
              
              
                Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
                
              
            
          
                      Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Ver todos los proyectos financiados en el marco de este régimen de financiación
              Convocatoria de propuestas
                
                  
                  
                    Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
                    
                  
                
            
                          Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) HORIZON-MSCA-2023-PF-01
Ver todos los proyectos financiados en el marco de esta convocatoriaCoordinador
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
3000 LEUVEN
Bélgica
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.