Objectif
Graph neural networks (GNNs) are deep learning architectures that hold the promise of durably changing our way of, e.g. predicting inter-molecular chemical affinity to accelerate drug discovery or smartly balancing power loads on the electricity grid. My project focuses on pooling layers, a major building block of neural networks, including GNNs. In a nutshell, pooling layers generate local summaries of the data to enable faster computations and generate discriminative multiscale representations. The traditional periodic-sampling-based pooling that has proven so successful for data defined on regular grids such as time series or images becomes ill-defined when the underlying space of the data loses its regularity such as data defined over graphs. Todays existing solutions stem from a trial-and-error approach often driven by two practical and somewhat short-sighted objectives: computation efficiency and empirical predictive performance. The aim of my project is to add trustworthiness as a main objective in the design of novel pooling layers for GNNs. To achieve this, I will bridge the fields of signal processing, point processes, and random numerical linear algebra with graph machine learning to incorporate random methods (mainly random sampling and random projections) into the design of pooling layers for GNNs. Indeed, randomized approaches are provably well adapted to three pillars of trustworthiness: technical robustness, transparency, and privacy. The outcome of my project will be an extensively tested, theoretically-grounded, trustworthy, ready-to-be-deployed, open-source, GNN-based toolbox, along with its user guide for practitioners. It will be the first GNN architecture benefiting from the theoretical guarantees random pooling layers come with. Such trustworthy GNNs will have an impact in the increasingly many fields in which GNNs are pushing the state-of-the-art: including circuit chip design, physics, drug discovery and network neuroscience.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles sciences biologiques neurobiologie
- sciences naturelles mathématiques mathématiques pures algèbre
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) HORIZON-MSCA-2023-PF-01
Voir tous les projets financés au titre de cet appelCoordinateur
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
9019 Tromso
Norvège
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.