Descripción del proyecto
La interacción entre holonomía y flujos geométricos
Las variedades topológicas son espacios topológicos que, cerca de cada punto, se asemejan a un espacio euclidiano de n dimensiones. Las líneas y curvas son variedades unidimensionales, mientras que las superficies son variedades bidimensionales. Las subvariedades generalizan el concepto de variedad a dimensiones superiores. Las subvariedades totalmente geodésicas y las hipersuperficies isoparamétricas son clases interesantes de subvariedades. En el proyecto HOLYFLOW, que cuenta con el apoyo de las acciones Marie Skłodowska-Curie, se pretende investigar la interacción de subvariedades totalmente geodésicos con holonomía riemanniana e hipersuperficies isoparamétricas con determinados flujos geométricos. El objetivo último del proyecto es obtener resultados de naturaleza tanto intrínseca como extrínseca, aprovechando tanto la teoría clásica de subvariedades en espacios simétricos como la experiencia en variedades con holonomía especial y flujos geométricos.
Objetivo
The geometric objects that can be perceived by our senses are curves and surfaces. Submanifolds provide a natural generalization for higher dimensions of these objects. The focus of this project is on totally geodesic submanifolds and isoparametric hypersurfaces, intriguing classes of submanifolds with connections to various mathematical areas, often studied using differential geometric, algebraic, or topological methods.
The aim of this project is to investigate the interplay of totally geodesic submanifolds with Riemannian holonomy and isoparametric hypersurfaces with certain geometric flows, with the ultimate goal of obtaining results of both intrinsic and extrinsic nature. Specifically, we intend to complete the classifications of totally geodesic submanifolds in symmetric spaces and of homogeneous hypersurfaces in exceptional symmetric spaces. We will also use certain classes of isoparametric hypersurfaces in combination with maximum principles to try to prove an Alexandrov-type theorem in the complex hyperbolic space and long-time existence for the hypersymplectic flow.
To develop this project, the Experienced Researcher will join the Geometric Analysis team at ULB in Brussels, under the supervision of one of its main researchers, Joel Fine. The host group has extensive experience in the study of manifolds with special holonomy and geometric flows, using techniques from PDE theory. The training strategy of this project involves assimilating these techniques. Moreover, the ER has experience in the classical theory of submanifolds in symmetric spaces, as evidenced by his contributions to the field. The combination of both backgrounds is essential for developing this proposal.
Finally, this MSCA fellowship will enhance the convergence of distinct research fields and collaborative networks, generate synergy with the research performed by the Supervisor, diversify the fellow’s mathematical knowledge, and establish him as an independent researcher.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) HORIZON-MSCA-2023-PF-01
Ver todos los proyectos financiados en el marco de esta convocatoriaCoordinador
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
1050 Bruxelles / Brussel
Bélgica
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.