Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

The impact of chromatin on the evolution and adaptation of eukaryotes

Objective

MAIN HYPOTHESIS: Changes in chromatin drive evolution and adaptation in eukaryotes.

MAIN OBJECTIVE: This project aims to understand the impact of epigenetic regulation on the evolution of eukaryotes adapted to extreme environments. To achieve this objective, I will use two approaches involving extremophilic eukaryotes: 1) Identify chromatin signatures to evaluate the potential roles of chromatin in adapting to extreme environments. 2) Use experimental evolution to examine how chromatin affects their capacity for adaptation.

BACKGROUND: My previous research identified genome size reduction as a broad signature of adaptation strategies in extremophilic eukaryotes. In particular, an unanticipated loss of several canonical epigenetic pathways took place during the evolution of extremophilic red algae. I hypothesize that global changes in chromatin features have influenced the adaptation to extreme environments in eukaryotes.

STRATEGIES: I will apply orthogonal strategies to investigate the function of chromatin in environmental adaptability. I will use multi-omics to reveal adaptation signatures based on the comparison of the composition and maps of chromatin features between extremophilic and mesophilic groups. Genetic engineering in model red algae will identify the chromatin machinery that impacts adaptation to extreme environments. Finally, experimental evolution will be used to characterize how the specific chromatin composition of extremophilic red algae impacts adaptation capacity.

IMPACT: This work will establish how chromatin influences the evolution of eukaryotes with direct experimental evidence. It will demonstrate how specific chromatin components impact eukaryotic adaptations and eventually identify some macro-evolutionary trends that participate in the emergence of new eukaryotic lineages.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.

You need to log in or register to use this function

Coordinator

GREGOR MENDEL INSTITUT FUR MOLEKULARE PFLANZENBIOLOGIE GMBH
Net EU contribution
€ 183 600,96
Address
DR BOHR GASSE 3
1030 Wien
Austria

See on map

Region
Ostösterreich Wien Wien
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost
No data