Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Application of Organic Polaritonics to Post-Synthesis Improvement of Singlet Fission in Molecular Dimers

Project description

Leveraging singlet fission to boost solar cell efficiency

Strong light-matter interactions hold great potential for improving solar cell efficiency by enhancing singlet fission. This refers to a process that can potentially double the energy harvested from sunlight by allowing a singlet excited state to be converted into two triplet states. However, singlet fission currently works effectively in a limited number of organic materials. Funded by the Marie Skłodowska-Curie Actions programme, the OP-FISSION project aims to unravel the principles of strong light-matter interactions in organic polaritonics to significantly improve singlet fission efficiency. If successful, project results could lead to important breakthroughs in materials science and photonics, pushing solar technology beyond its current limits.

Objective

Strong light-matter coupling (SC) is increasingly proposed as a powerful tool for post-synthetic control of the optoelectronic properties of organic materials. This technology aims to exploit the easily tuneable polariton states arising from the SC between confined light fields and excitons in organic materials to rewrite molecular energy landscapes and redirect physical pathways. Singlet fission (SF) is a promising technology for improving the efficiency of photovoltaic solar cells beyond their theoretical limit. The SF process consists of the splitting of a singlet excited state into two entangled triplet-triplet states that later become two independent triplets, yielding up to two excited states per absorbed photon –hence, more efficient solar cells. Despite its great potential, SF has been observed only in a limited number of organic compounds and in many cases with a low efficiency, being the synthesis of new derivatives a huge challenge. Recently, some theoretical studies proposed SC as a post-synthesis solution to enhance the SF performance of inefficient materials, by controlling their energy landscape. However, the growing difficulty in reproducing key results in the field of Organic Polaritonics (OP) suggests a poor understanding of the involved phenomena. The major research ambition of this MSCA proposal is to understand the working principles in the OP field and demonstrate that SC can be exploited to enhance the SF efficiency. The implementation of this MSCA proposal will provide a deep knowledge of SC at the molecular scale and how to control it at the macroscale within polaritonic devices, realizing the post-synthetic control of the molecular properties. This achievement will lead to important breakthroughs in Materials Science and Photonics, setting the basis for the OP field. Besides, the proposed research and training activities will expand my experience, research expertise and networks, providing a boost to my career as an independent researcher.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-GF - HORIZON TMA MSCA Postdoctoral Fellowships - Global Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2023-PF-01

See all projects funded under this call

Coordinator

POLITECNICO DI MILANO
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 265 099,20
Address
PIAZZA LEONARDO DA VINCI 32
20133 Milano
Italy

See on map

Region
Nord-Ovest Lombardia Milano
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Partners (1)

My booklet 0 0