Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Unraveling the molecular core of conductivity in cable-bacteria nanowires for circular bioelectronics

Project description

Untangling the substrates of conductivity in nature’s electrical cables

Electronic waste is the world’s fastest growing waste stream. Bio-based electronics made from renewable feedstock are a sustainable solution. Cable bacteria are like nature’s electrical wiring. They are formed as long filaments of interconnected cells that can transmit electrons over centimetre distances. Little is known about the molecular mechanisms underlying the conductivity of the cores in the periplasmic fibres of cable bacteria other than that it seems to rely on a novel nickel-sulfur cofactor. With the support of the Marie Skłodowska-Curie Actions programme, the ReNiStor project aims to identify the conductive molecule and its role in the fibres by integrating cutting-edge orthogonal spectroscopic techniques, mass spectrometric methods and chemical imaging.

Objective

Achieving sustainability and circularity in electronics is a grand societal challenge that requires urgent action. The production of electrical components is energy intensive and puts a burden on the environment and resources. E-waste represents the world’s largest growing waste-stream and is increasing through “Internet of Things”. Microbially produced, bio-based electronics provide a promising sustainable alternative, which can be produced from renewable feedstocks and provides better biodegradation and can be extensively tuned with genetic or chemical modifications. Cable-bacteria are unique class of sediment dwelling, sulphate-oxidizing microbes, whose lifestyle has evolved entirely around long range (cm scale) conductivity. Amongst conductive materials in biology, the conductive cores in the periplasmic fibres of cable-bacteria show the highest conductivity by a wide margin and should form a primary starting point for bioelectronics design. Apart from tentative models on the fibre structure, little is known on the molecular basis and mechanism behind their conductivity, which seems to revolve around an entirely novel Ni/S cofactor. To understand the mechanism behind this remarkable biological conductivity, ReNiStor (Responsible electronics from Nickel Sulphur cofactor) aims to investigate the molecular composition of the novel cofactor, as well as it's coordination chemistry and its oxidation state. By integrating orthogonal high-end spectroscopic techniques, mass spectrometric methods and chemical imaging, the identity of the conductive molecule and its role in within the fibres will be analyzed, so that it can be subsequently produced in vitro or form a template for the design of new biomolecules. This innovation will clear the path for electronics to make the essential transition from the fossil-based to the bio-based economy, enabling radically new production and recycling pathways.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2023-PF-01

See all projects funded under this call

Coordinator

UNIVERSITEIT ANTWERPEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 175 920,00
Address
PRINSSTRAAT 13
2000 Antwerpen
Belgium

See on map

Region
Vlaams Gewest Prov. Antwerpen Arr. Antwerpen
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0