Project description
Untangling the substrates of conductivity in nature’s electrical cables
Electronic waste is the world’s fastest growing waste stream. Bio-based electronics made from renewable feedstock are a sustainable solution. Cable bacteria are like nature’s electrical wiring. They are formed as long filaments of interconnected cells that can transmit electrons over centimetre distances. Little is known about the molecular mechanisms underlying the conductivity of the cores in the periplasmic fibres of cable bacteria other than that it seems to rely on a novel nickel-sulfur cofactor. With the support of the Marie Skłodowska-Curie Actions programme, the ReNiStor project aims to identify the conductive molecule and its role in the fibres by integrating cutting-edge orthogonal spectroscopic techniques, mass spectrometric methods and chemical imaging.
Objective
Achieving sustainability and circularity in electronics is a grand societal challenge that requires urgent action. The production of electrical components is energy intensive and puts a burden on the environment and resources. E-waste represents the world’s largest growing waste-stream and is increasing through “Internet of Things”. Microbially produced, bio-based electronics provide a promising sustainable alternative, which can be produced from renewable feedstocks and provides better biodegradation and can be extensively tuned with genetic or chemical modifications. Cable-bacteria are unique class of sediment dwelling, sulphate-oxidizing microbes, whose lifestyle has evolved entirely around long range (cm scale) conductivity. Amongst conductive materials in biology, the conductive cores in the periplasmic fibres of cable-bacteria show the highest conductivity by a wide margin and should form a primary starting point for bioelectronics design. Apart from tentative models on the fibre structure, little is known on the molecular basis and mechanism behind their conductivity, which seems to revolve around an entirely novel Ni/S cofactor. To understand the mechanism behind this remarkable biological conductivity, ReNiStor (Responsible electronics from Nickel Sulphur cofactor) aims to investigate the molecular composition of the novel cofactor, as well as it's coordination chemistry and its oxidation state. By integrating orthogonal high-end spectroscopic techniques, mass spectrometric methods and chemical imaging, the identity of the conductive molecule and its role in within the fibres will be analyzed, so that it can be subsequently produced in vitro or form a template for the design of new biomolecules. This innovation will clear the path for electronics to make the essential transition from the fossil-based to the bio-based economy, enabling radically new production and recycling pathways.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering waste management waste treatment processes recycling
- natural sciences computer and information sciences internet
- natural sciences chemical sciences electrochemistry electrolysis
- natural sciences chemical sciences inorganic chemistry transition metals
- natural sciences biological sciences biochemistry biomolecules
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2023-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2000 Antwerpen
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.