Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Triaxial stresses, anisotropic damage, and directional fluid flow across scales

Project description

A closer look at fluid flow dynamics in fractured rocks

Predicting fluid flow in fractured rocks is important for geothermal energy production and CO2 storage. Accurate simulations depend on understanding how three-dimensional stresses affect fracture geometry and fluid direction. However, current knowledge is limited due to challenges in replicating deep crustal conditions in laboratories, where experiments are often conducted under simplified, two-dimensional stress settings. With the support of the Marie Skłodowska-Curie Actions programme, the TRIFLOW project addresses this gap by using a novel apparatus to deform samples under true crustal conditions. By integrating 3D mapping of fossilised fluid flow and advanced numerical analyses, TRIFLOW aims to enhance the safety and efficiency of subsurface fluid injection for energy generation and CO2 storage.

Objective

The ability to accurately predict both the magnitude and direction of fluid flow within fractured rocks is paramount for the secure injection of fluids into the subsurface—an essential operation for geothermal energy production and CO2 storage. Even though the stress conditions at depth control the creation of fractures and the transport of fluids through them, technical difficulties have impeded the replication of crustal conditions in the laboratory, and the knowledge of fracture development comes primarily from experiments conducted under simplified two-dimensional stress conditions. This limited perspective has restricted the understanding of the interplay between three-dimensional stresses, the geometry of developed fracture networks, and the direction of fluid flow within fractured rocks. Furthermore, a key challenge for large-scale fluid flow prediction is the extrapolation of results obtained at the laboratory scale (centimetres) to actual reservoir scale (hundreds of meters to kilometres). This project, TRIFLOW, will use for the first time a novel apparatus to deform samples under representative crustal conditions to establish how 3D stresses influence fracture geometry and directional permeability. These results will be combined with innovative 3D mapping methods applied to natural examples of fossilised fluid flow in the form of vein networks, and numerical analyses, to study the dynamics of tridimensional fluid flow across scales. The outcomes of this project are expected to bring substantial advancements to our comprehension of fluid flow dynamics under genuine crustal conditions. This improved understanding will, in turn, enhance the precision of fluid flow simulations for applications involving the injection of fluids into fractured rocks, thereby contributing to the safety of processes such as geothermal fluid injection for energy generation and CO2 storage, both of which are crucial solutions for reducing greenhouse emissions to the atmosphere.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2023-PF-01

See all projects funded under this call

Coordinator

UNIVERSITA DEGLI STUDI DI PADOVA
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 172 750,08
Address
VIA 8 FEBBRAIO 2
35122 PADOVA
Italy

See on map

Region
Nord-Est Veneto Padova
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0