Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Towards Primate-like Artificial Neural Networks for Visual Object Tracking

Description du projet

Les systèmes de vision artificielle à la loupe

Maintenir l’attention fixée sur un objet au milieu d’une scène visuelle changeante est un jeu d’enfant pour notre cerveau, mais reste un défi de taille pour les systèmes de vision artificielle. Malgré les progrès réalisés, les algorithmes existants ne parviennent pas à reproduire la robustesse du système visuel des primates. Soutenu par le programme Actions Marie Skłodowska-Curie (MSCA), le projet PRINNEVOT comblera le fossé entre la vision par ordinateur et le traitement visuel des primates. En construisant un ensemble de données de référence qui contribuera à l’identification des méthodologies de réseaux neuronaux qui s’alignent sur les mécanismes du cerveau des primates, PRINNEVOT cherchera à faire progresser à la fois l’IA et notre compréhension du système visuel des primates. Cet objectif s’inscrit dans le cadre des efforts déployés par l’UE en faveur d’une IA éthique, promettant des technologies plus sûres et plus dignes de confiance.

Objectif

The PRINNEVOT project embarks on a mission to bridge the gap between computer vision and the primate visual system in the context of Visual Object Tracking (VOT). VOT is the task of maintaining focus The PRINNEVOT project embarks on a mission to bridge the gap between computer vision and the primate visual system in the context of Visual Object Tracking (VOT). VOT is the task of maintaining focus on a specific object amidst a dynamic visual environment. Our brains excel at it but replicating this ability in artificial vision systems remains a challenge. This project seeks to develop a novel class of VOT algorithms inspired by the primate visual system's prowess. Despite notable advancements in deep learning-based VOT over the past decade, these algorithms still fall short in emulating the robustness exhibited by primate vision. PRINNEVOT will address this gap through a multi-faceted approach. Firstly, PRINNEVOT will construct a comprehensive reference dataset, investigating both primate behavior and neural recordings. Secondly, among the existing artificial neural network (ANN)-based VOT methodologies, the project aims to identify those that align most closely with the primate brain's mechanisms. Lastly, PRINNEVOT will leverage the discovered inductive biases to develop a new ANN architecture for VOT that closely mirrors the primate's way of continuous object recognition and localization. By merging computer vision and computational neuroscience research, PRINNEVOT aspires to contribute to the development of more accurate and robust VOT algorithms. These algorithms, in alignment with the European Union's pursuit of safer and ethically grounded Artificial Intelligence, promise to enhance human-centric and trustworthy technologies. Furthermore, the project's outcomes will not only benefit AI and computer vision but also advance our understanding of the primate visual system, offering new empirical models of how the brain tracks objects in dynamic visual environments.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-TMA-MSCA-PF-GF - HORIZON TMA MSCA Postdoctoral Fellowships - Global Fellowships

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) HORIZON-MSCA-2023-PF-01

Voir tous les projets financés au titre de cet appel

Coordinateur

UNIVERSITA DEGLI STUDI DI UDINE
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 256 442,88
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Partenaires (1)

Mon livret 0 0