Project description
Enhancing gas turbine durability in a renewable future
As the energy landscape shifts toward greater reliance on variable renewable energy sources, gas turbine technologies must adapt. This transition necessitates higher ramp rates and increased cycling operations, stressing hot components and reducing their lifespan. Current turbine inlet temperatures of 1 500 ºC need to rise to 1 800 ºC for improved efficiency, but this exceeds the limits of high-performance superalloys, leading to potential failure of thermal barrier coating systems. Supported by the Marie Skłodowska-Curie Actions programme, the MIM-TBC project is developing a mechanistic and microstructure-sensitive framework to predict deformation and damage progression in MCrAlY-YSZ TBC systems. This research aims to enhance the durability and reliability of gas turbines, ensuring their longevity in a changing energy environment.
Objective
Among conventional power generation systems, gas turbine (GT)-based technologies provide the optimal balance between reliability, affordability, and, most importantly, flexibility in the face of a substantial proportion of variable renewable energies (VREs). In response to intermittent VREs, the operational profile of GT will shift towards higher ramp rates, more frequent peak-load/base-load cyclic operations, and a greater number of start-ups which will negatively affect the life cycle of hot components. On the other hand, to enhance efficiency, the turbine inlet temperature should increase from the current 1500℃ to 1800℃, exceeding the temperature limit of high-performance superalloys (1300℃) and imparting the severest thermo-mechanical loading on hot gas path components being coated with indispensable overlay or diffusion type thermal barrier coating (TBC) systems. Owing to the multifaceted and severe consequences of protective coatings failure, research to predict interrelated deformation, chemo-thermo-mechanical degradation and subsequent failure of TBC systems particularly under high-temperature thermal cycling is a top priority. Experimental durability tests, which are primarily based on empirical fitting of coatings mass loss data, are incapable of predicting the lifetime and long-term degradation of a TBC system. In light of the above circumstances, it is extremely beneficial to develop comprehensive modeling techniques that are capable of replacing time-intensive and limited-scope experimental endeavors. Among the different options available, MCrAlY-YSZ (with M being Ni or Co) arises as the most common protective coating system. MIM-TBC project aims at developing a mechanistic and microstructure-sensitive framework for predicting deformation, damage progression, and lifetime of the MCrAlY-YSZ TBC system. Specifically, the framework will be organized to achieve the following specific objectives: O1) A microstructure-sensitive framework for deformation analysis of MCrAlY-based TBC system under thermal cycling O2) Physically-based lifetime prediction of MCrAlY-based TBC system under thermal cycling.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2023-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28906 Getafe
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.