Project description
Novel immunotherapy targets
Immune checkpoint blockade is a type of immunotherapy that aims to enhance the body's immune response against cancer cells. It works by targeting proteins known as immune checkpoints that regulate T cell function and under physiological conditions prevent strong immune responses against healthy cells in the body. Funded by the Marie Skłodowska-Curie Actions programme, the UBImmune project is concerned with the limited response of non-small cell lung cancer and triple-negative breast cancer to immune checkpoint blockade. The work focuses on the protein B7H3 known to promote tumour growth and inhibit immune cell function. Researchers aim to target this protein and identify its interacting partners on T cells, hoping to improve treatment options for cancers with poor immunotherapy outcome.
Objective
Immunotherapies have revolutionized the treatment of multiple cancer types in the last decade. Nonetheless, non-small cell lung cancer and triple-negative breast cancer exhibit only restricted response to immune checkpoint blockade. Especially in advanced tumor stages, clinical options are limited and novel approaches to enhance anti-tumor immune responses are needed. The immune checkpoint family member B7H3 (PD-L3) is frequently upregulated in cancer cells. Studies have shown that B7H3 promotes tumor growth in a cancer-cell autonomous fashion and inhibits immune cells in the tumor microenvironment. Despite being an important clinical target, its posttranslational regulation and functional interactors on T cells are poorly understood. The proposed project aims to identify novel approaches to target B7H3 by harnessing the ubiquitin system and to identify B7H3s interactors on human T cells with the objective of enhancing clinical treatment options for cancer patients. My experience in solid tumor biology and anti-tumor immunity, paired with the host lab's expertise in studying the ubiquitination system, will be a great catalyst for the proposed project enhancing its likelihood of success. This fellowship will allow me to conduct cutting-edge research at the Center for Translational Cancer Research of the University Clinics rechts der Isar of the Technical University of Munich (TUM), a renowned research institution with a well-recognized supervisor Prof. Bassermann, allowing me to expand my international network, scientific skills as well as leadership and management skills. Ultimately, this fellowship will be a tremendous stepping stone in my scientific career. It will bring me closer to my goal of becoming an independent researcher working at the interface of cancer biology, protein biochemistry, and cancer immunology, where I can put my own projects into practice, and train the next generation of international scientists.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- medical and health sciencesclinical medicineoncologylung cancer
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteins
- medical and health sciencesbasic medicineimmunology
- natural scienceschemical sciencescatalysis
You need to log in or register to use this function
Keywords
Programme(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Funding Scheme
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinator
81675 MUENCHEN
Germany