Project description
Hydrogen’s role in formation and evolution of interstellar complex organic molecules
Recent studies of star and planet formation have highlighted the essential role astrochemistry plays in these processes to explain the formation of interstellar molecules. The solid-state chemistry involving molecular hydrogen (H2), the most abundant molecule in the universe, still remains unknown so far. With the support of the Marie Skłodowska-Curie Actions programme, the ORCHID project will investigate the role of H2 ice in the formation and evolution of interstellar complex organic molecules (COMs), exploring a neglected pathway of H2 reactions with carbon atoms. To do so, ORCHID will use cutting-edge experimental setups to better understand the data produced by state-of-the-art telescopes.
Objective
The recent progress in astrochemical studies of the molecular makeup of the Interstellar Medium (ISM) has revolutionized our understanding of the early phases of star and planet formation. A significant gap, however, still exists and that involves the role of molecular hydrogen (H2)—the most abundant molecule in the universe—in interstellar ice chemistry. ORCHID aims to fill this gap by investigating the impact of H2 on the formation and evolution of complex organic molecules (iCOMs) in the ISM. Given the lack of existing literature detailing solid-state reaction pathways incorporating H2, ORCHID hypothesizes that H2 reactions with carbon atoms is instrumental in unexplored chemical pathways for iCOMs formation. To achieve its objectives, ORCHID uses state-of-the-art experimental setups to produce quantitative data that aligns with the latest observations of interstellar ices from the James Webb Space Telescope (JWST) and gas-phase observations from radio-telescopes like the Atacama Large Millimeter/submillimeter Array (ALMA). Specifically, the project: (1) explores iCOMs formation through previously overlooked pathways involving H2, completing and extending reaction networks in the ISM; (2) generates accurate parameters for astrochemical models, facilitating simulations that match observations of star- and planet-forming regions; (3) investigates the conditions under which iCOMs are released into the gas phase, especially at temperatures where thermal desorption is not feasible in the ISM. The insights and data generated by ORCHID will serve as a robust foundation for interpreting ongoing and future astronomical observations. Moreover, the project will enrich existing gas-grain kinetic models, effectively bridging the grain-gas gap and thereby advancing our understanding of how chemical processes in the ISM influence the composition of celestial bodies in star- and planet-forming regions.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2023-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2311 EZ Leiden
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.