Objective
The suprachiasmatic nucleus (SCN) of the brain, our internal clock, synchronizes physiology to the Earths rotation using signals from the environment such as light and food intake. However, in industrialized cities, these same signals at wrong times uncouple the internal clock from the environment, leading to circadian misalignment, such as in night and shift workers, who have elevated risks of developing obesity and metabolic syndrome. Nevertheless, effective measures to delay or limit health costs for these people are yet to come. Recently, I described novel vasopressinergic SCN neuronal (SCNAVP) fibers in the vicinity of non-neuronal hypothalamic cells known as tanycytes that have the ability to sense and transport metabolic cues. Whether the sensor and transporter functions of tanycytes are regulated in a circadian manner by the SCN, and whether this regulation plays a role in the development of metabolic impairments during circadian misalignment, are unknown. Thus, in the Circanycyte project, we will seek to 1) determine how SCNAVP neurons control tanycytic function, 2) explore the role of SCNAVP neuron-tanycyte communication in circadian alignment and metabolic fitness, and 3) determine the contribution of SCNAVP neuron-tanycyte miscommunication to the development of metabolic syndrome during circadian misalignment. To accomplish these aims, I will undergo training in cutting-edge technologies (e.g. Ca2+ in vivo imaging of tanycytes, with simultaneous optogenetic manipulations), while I exercise my leadership and management skills by working in a top laboratory, using the experience as a launching pad for international collaborations in frontier science in the EU. My original angle of research, hypothesizing that tanycytes, which extend processes outside the blood-brain barrier, are key targets of the SCN to regulate metabolism, is a strategic choice that promises to uncover new actionable pharmaceutical targets to fight desynchronization-related disorders
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering fibers
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- medical and health sciences basic medicine physiology
- medical and health sciences health sciences nutrition obesity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2023-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
59000 Lille
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.