Project description
Universal similarity function to precisely compare content in different multimedia items
Multimedia content integrates multiple forms of communication including videos, audio clips, photographs and text. It has become ubiquitous and indispensable. Analysing this information is essential for many purposes, among which is determining the similarity between two multimedia items, particularly relevant in the era of AI-generated content. With the support of the Marie Skłodowska-Curie Actions programme, the LUSt project aims to make this possible with high accuracy, leveraging its universal similarity function and a foundational model. The model architecture is based on transformer-based deep learning modules and will be strengthened by pioneering positional encodings rooted in kernel methods. This enables effective management of different part topologies in diverse domains.
Objective
Multimedia content is indispensable in our society, necessitating effective content management. A critical aspect of this is assessing the similarity between two multimedia items like images, videos, and documents. LUSt's mission is to pioneer a universal similarity function capable of precisely measuring similarity across a broad spectrum of multimedia domains and tasks. Diverging from traditional problem-specific approaches prevalent in current literature, LUSt adopts a novel strategy. LUSt plans to break down multimedia items into their constituent parts, including image regions, video frames, and text sentences. Subsequently, a foundational model will be trained on input data comprising part similarities across various multimedia items. This strategic choice yields a universal input space with multiple advantages. Firstly, it promotes seamless collaboration across different domains and tasks, facilitating joint training and mutual enhancement among tasks, which will be further enriched through multi-task learning techniques. Secondly, it streamlines the integration of synthetic data during training, a key ingredient for large-scale training of a foundational model. The model architecture is grounded in transformer-based deep learning modules and will be fortified by pioneering positional encodings rooted in kernel methods. These positional encodings empower us to effectively manage the differing part topologies encountered across diverse domains -- a formidable challenge in itself. The work program commences by focusing on a single domain and task but is thoughtfully designed for extensibility. The ultimate goal is creating a foundational model capable of accommodating all modalities -- visual, audio, text -- and supporting a broad range of similarity types, including uni-modal, cross-modal, and multi-modal scenarios. LUSt's commitment to universality will be thoroughly validated through comprehensive benchmarking, spanning numerous tasks and domains.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
- natural sciences computer and information sciences data science natural language processing
- natural sciences computer and information sciences artificial intelligence computer vision
- natural sciences computer and information sciences artificial intelligence machine learning deep learning
- natural sciences computer and information sciences data science data processing
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2023-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
160 00 PRAHA
Czechia
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.