Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Learning a Universal Similarity Function

Descrizione del progetto

Funzione di somiglianza universale per confrontare esattamente i contenuti di diversi elementi multimediali

I contenuti multimediali integrano varie forme di comunicazione, tra cui video, clip audio, fotografie e testi, e sono diventati onnipresenti e indispensabili. L’analisi di queste informazioni è essenziale per molte finalità, tra cui la determinazione della somiglianza tra due elementi multimediali, un aspetto particolarmente rilevante nell’era dei contenuti generati dall’IA. Con il supporto del programma di azioni Marie Skłodowska-Curie, il progetto LUSt si propone di rendere possibile tale processo con un’elevata precisione, avvalendosi della funzione di somiglianza universale sviluppata e di un modello fondamentale. L’architettura del modello si basa su moduli di apprendimento profondo basati su trasformatori e sarà rafforzata da pionieristici codificatori di posizione legati ai metodi kernel. Ciò consente di gestire efficacemente parti di topologie diverse in vari domini.

Obiettivo

Multimedia content is indispensable in our society, necessitating effective content management. A critical aspect of this is assessing the similarity between two multimedia items like images, videos, and documents. LUSt's mission is to pioneer a universal similarity function capable of precisely measuring similarity across a broad spectrum of multimedia domains and tasks. Diverging from traditional problem-specific approaches prevalent in current literature, LUSt adopts a novel strategy. LUSt plans to break down multimedia items into their constituent parts, including image regions, video frames, and text sentences. Subsequently, a foundational model will be trained on input data comprising part similarities across various multimedia items. This strategic choice yields a universal input space with multiple advantages. Firstly, it promotes seamless collaboration across different domains and tasks, facilitating joint training and mutual enhancement among tasks, which will be further enriched through multi-task learning techniques. Secondly, it streamlines the integration of synthetic data during training, a key ingredient for large-scale training of a foundational model. The model architecture is grounded in transformer-based deep learning modules and will be fortified by pioneering positional encodings rooted in kernel methods. These positional encodings empower us to effectively manage the differing part topologies encountered across diverse domains -- a formidable challenge in itself. The work program commences by focusing on a single domain and task but is thoughtfully designed for extensibility. The ultimate goal is creating a foundational model capable of accommodating all modalities -- visual, audio, text -- and supporting a broad range of similarity types, including uni-modal, cross-modal, and multi-modal scenarios. LUSt's commitment to universality will be thoroughly validated through comprehensive benchmarking, spanning numerous tasks and domains.

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) HORIZON-MSCA-2023-PF-01

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

CESKE VYSOKE UCENI TECHNICKE V PRAZE
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 150 438,72
Indirizzo
JUGOSLAVSKYCH PARTYZANU 1580/3
160 00 PRAHA
Cechia

Mostra sulla mappa

Regione
Česko Praha Hlavní město Praha
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Partner (1)

Il mio fascicolo 0 0