Project description
Safer, affordable NIR detectors for a greener future
Near-infrared (NIR) light detection is essential for applications such as environmental monitoring, night vision, and remote imaging. However, current NIR detectors are made from expensive, toxic materials, limiting their use in many areas, including healthcare. These materials are not only costly, but also harmful to the environment and human health. Safer alternatives exist, but are still in the early stages of development. With the support of the Marie Skłodowska-Curie Actions programme, the SolProDet project is developing new, safer NIR detectors using silver chalcogenide-based quantum dots (QDs). The project focuses on improving these materials and designing better devices, aiming to create NIR detectors that are both effective and environmentally friendly.
Objective
Self-powered near-infrared (NIR: 0.7–2.5 μm) deteSelf-powered near-infrared (NIR: 0.7–2.5 μm) detection technologies attract immense interest both from scientists and industry experts due to their vital applications in environmental monitoring, night vision, and imaging in remote locations. However, available conventional NIR photodetectors (PDs) are based on costly fabricated inorganic semiconductor materials or toxic heavy metal-containing quantum dots (QDs), which restrict their use in electronics and biomedical applications. Silver chalcogenide-based (Ag2E, E= S, Se, Te) QDs have recently joined as new promising toxic heavy metal-free materials for NIR detection, making them appealing from health and environmental safety perspectives. Nevertheless, the development of Ag2E-based NIR PDs is in its initial stage and far behind the commercially available devices due to the lack of protocols for device-relevant thin film fabrication with favourable device architecture.
In this project, we propose a novel approach to solve this issue, which consists of two strategies: (i) chemical synthesis of small Ag2E and MAgE alloyed QDs followed by thin film preparation with favourable legend and thickness, (ii) PD architecture with proper electrode and electrode distance. To achieve this, the first strategy will develop synthesis protocols to control the size of Ag2E QDs and optimize their absorption and electronic properties by ligand exchange for NIR PDs application with different metal electrodes and electrode distances. In the next stage, the potential metal alloy will be introduced into Ag2E QDs by cation exchange, followed by studying the optical and electrical properties to optimize the synthesis and thin film quality for self-powered NIR PDs. In the last stage, the work will concentrate on the optimization of photodiodes using the best-suited Ag2E and MAgE QDs and demonstrate the application potential and related extensive characterization of these devices for upscaling.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors optical sensors
- natural sciences chemical sciences inorganic chemistry transition metals
- engineering and technology materials engineering coating and films
- natural sciences physical sciences electromagnetism and electronics semiconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2023-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
01069 DRESDEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.