Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Quantum-mechanical modeling of the dissociation of hydrogen bonds

Project description

Advanced computational framework could unveil hydrogen bond ultrafast dynamics

Hydrogen bonds are crucial in various scientific fields, including biology, chemistry and atmospheric science. While their spectroscopic features are well understood, the ultrafast dynamics of hydrogen bonds remain less explored. Current theoretical models often rely on classical or semi-classical approximations to describe nuclear movement. Funded by the Marie Skłodowska-Curie Actions programme, the QM Modeling H-Bond project aims to provide a fully quantum mechanical understanding of hydrogen bond dissociation leveraging advances in ultrafast imaging. Specifically, researchers will study the hydrogen bond dissociation dynamics of the pyrrole-H2O complex using a reduced-dimensional framework. The dissociation process will be initiated by infrared excitation. Improved understanding of the quantum dynamics of hydrogen bond dissociation should improve understanding of chemical, biological and atmospheric processes.

Objective

Hydrogen bonds are everywhere in nature, and they are important in many fields of science. Well-known examples come from biology (helix structure, protein folding, enzyme docking), chemistry (solvation, structure and properties of water), and atmospheric science (nucleation and growth of aerosols). Today, the spectroscopic features of hydrogen bonds are relatively well understood, but much less is known about the associated ultrafast dynamics. The theoretical models that are used to understand and design present ultrafast experiments are often based on classical or semi-classical approximations to describe the movement of the nuclei. With the recent advances in both theory and ultrafast imaging techniques, we believe that the time is ripe for a full quantum mechanical picture of hydrogen-bond dissociation. A quantum mechanical picture of hydrogen bond dissociation will contribute to the basic understanding of chemical, biological, and atmospheric processes.

In this project, I will perform a comprehensive quantum mechanical study of the hydrogen-bond dissociation dynamics of a small hydrogen-bound complex, pyrrole-H2O. The calculations will be performed in a reduced-dimensional framework, for which the central hypothesis is that certain vibrations dictate the dissociation process while other vibrations serve as spectators. The dissociation process will be initiated through an infrared excitation that provides just enough energy to dissociate the complex, but not enough energy to initiate other unwanted processes. We will establish how the reaction mechanisms for hydrogen-bond dissociation manifest themselves in the ongoing ultrafast dynamics experiments performed in the Controlled Molecule Imaging (CMI) group. The calculations will be tailored to design and simulate realistic experiments, and to facilitate the analysis of the experimental results.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2023-PF-01

See all projects funded under this call

Coordinator

DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 173 847,36
Address
NOTKESTRASSE 85
22607 HAMBURG
Germany

See on map

Region
Hamburg Hamburg Hamburg
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0