Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS

Flow Controlled Prosthetic Heart Valves

Project description

Changing how we see heart valve replacements

Prosthetic heart valves help patients with heart disease, but they have problems. Some valves made from animal tissue do not last long, while others require patients to take medicine for life. With this in mind, the ERC-funded StreamlineValve project aims to improve blood flow through Polymeric HVs (PHVs), reducing flow-related thrombosis. Their patented PHV design alters flow fields to minimise clotting factors, as demonstrated successfully in vitro. The project promises a change in thinking: durable valves without lifelong medication, implanted via transcatheter procedures. StreamlineValve holds the potential to revolutionise prosthetic heart valves, offering longevity, improved quality of life, and enhanced patient safety.

Objective

Prosthetic Heart Valves (HV), both biological (BHV) and mechanical (MHV), have improved the survival rate and the quality of life of valvular heart-disease patients over the last six decades. While BHVs, taken from animal tissue, show improved hemodynamics, their durability is limited, whereas MHVs can last a patient's entire lifetime but require lifetime anticoagulation medication to reduce thrombotic complications. Future Polymeric HVs (PHV) hold the potential for enhanced durability compared to BHVs, while potentially avoiding the necessity for anticoagulation therapy that MHVs demand. However, the problem of flow-related thrombosis in PHVs remains a critical challenge.
Generally, flow-related thrombosis complications can be avoided by altering the flow field around the PHV, such as reducing vortices and circulatory hemodynamic structures as well as decreasing shear stresses which can lead to platelet activation. Inspired by passive flow control in nature and in the aerodynamics industry, where manipulation of fluid flow via a small configuration change provides large engineering benefits in swimming or flying, we aim to use a flow control strategy to optimize blood flow through PHVs. More specifically, in StreamlineValve, we present a new, patented, PHV that is designed to alter the flow field around the valve in a manner that reduces the primary factors contributing to coagulation on PHVs. We have already successfully demonstrated this concept in vitro in a modified MHV. In this PoC, we propose to extend this to the future of prosthetic valves via a flow controlled PHV that can be implanted via a simple transcatheter procedure avoiding undesired surgical procedures. Altogether, StreamlineValve represents a paradigm shift in the realm of prosthetic HVs, offering the potential to enhance valve longevity, quality of life, and patient safety.

Keywords

Host institution

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Net EU contribution
€ 150 000,00
Address
SENATE BUILDING TECHNION CITY
32000 Haifa
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost
No data

Beneficiaries (1)