Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Flow-induced morphology modifications in porous multiscale systems

Project description

Modelling flow-induced morphology modifications in porous multiscale systems

In many environmental and industrial systems involving fluids in porous media, local flow conditions modify the porous structure. Likewise, the flow is controlled by the geometry of the porous matrix. This is the case of snow: when ice crystals melt, water infiltrates through the interstitial space, melting neighboring crystals or refreezing around them. Predicting the dynamics of these systems poses a challenge due to the multiway coupling, multiscale nature and feedback mechanisms. The ERC-funded project MORPHOS aims to develop a multiscale modelling framework to predict the large-scale and long-term flow-induced morphology modifications of porous systems. High-resolution simulations and controlled laboratory experiments will be used to develop simple and reliable models to design, predict and control these flows.

Objective

Fluid flows through porous media with morphology modifications are ubiquitous across nature and industry, from the melting and refreezing of snow to the migration of carbon dioxide in underground aquifers, from phase-change materials in energy storage systems to the formation of sea ice. A key property of media experiencing morphology variations is that the modifications of the pore structure relate to the local flow conditions, which in turn are affected by the geometry of the porous matrix. Despite their importance and pervasiveness, measuring and modelling flow transport and medium evolution in these systems remains challenging, due to the multiway coupling, multiscale nature and feedback mechanisms. The objective of this project is to shed new light on the evolution of porous multiscale systems characterised by flow-induced morphology modifications. Three classes of media with increasing levels of complexity (porous media with phase-change, reactive media and reactive media with phase-change) will be investigated in well-defined and controlled flow configurations. To tackle these problems, we will employ in a complementary manner a combination of numerical simulations, laboratory experiments and theoretical modelling. We will use these findings in a multiscale modelling framework where the large-scale and long-term flow behaviour is predicted by simple models that are fed with the results of high-resolution numerical and laboratory experiments. This project aims at a true scientific breakthrough: we want to gain a quantitative understanding of flow transport and medium evolution in porous media with morphology modifications, unraveling a number of physical mechanisms that will allow the prediction and control of these complex systems.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2024-STG

See all projects funded under this call

Host institution

TECHNISCHE UNIVERSITAET WIEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 499 791,00
Address
KARLSPLATZ 13
1040 Wien
Austria

See on map

Region
Ostösterreich Wien Wien
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 499 791,00

Beneficiaries (1)

My booklet 0 0