Project description
A holistic approach to intelligent adaptation
Robots have advanced in learning capabilities due to powerful neural models and vast data sets. However, critical questions remain: Do large architectures and extensive data truly foster robotic intelligence that mirrors human intuition? Moreover, how can we enhance robot learning systems to thrive in dynamic, real-world environments? To answer these questions, the ERC-funded SIREN project will present a holistic view of robot learning, integrating robots and their surroundings as a cohesive system. By investigating the action-perception cycle and leveraging graph neural networks, SIREN aims to develop adaptive robots capable of executing complex tasks in unstructured environments. This paradigm shift promises to pave the way for continuous, evolution-based learning in robotics.
Objective
Robot learning has made remarkable strides thanks to high-capacity neural models and extensive datasets. However, there are persisting research questions concerning large-scale robot learning models: are massive architectures and data needed for achieving robotic embodied intelligence to solve tasks intuitive to humans? And how can we make substantial progress toward robust and adaptive robot learning systems to operate in the dynamic real world? I posit that these open problems stem from overlooking the underlying principles and structure that govern the intricate robot-environment interaction and evolution.
SIREN addresses these pressing issues by proposing a unique systemic view of robot learning through the holistic representation of robot and environment as an integrated system. To achieve this, we will unveil key properties of the action-perception cycle for developing embodied intelligence by studying the intertwined flow of information and energy within the components of the holistic system. For that, we propose a framework that pioneers information-driven and physics-aware objectives that encompass the learning from embodied multisensorial streams of a modular graph representation of the robot-environment system and its dynamics, backed by the versatility of graph neural networks, allowing for modular uncertainty estimation to promote robustness. Eventually, we will yield resilient dynamics for training uncertainty-aware, composable skills to adapt to new tasks. SIREN's breakthroughs will enable robots, like humanoid mobile manipulators, to merge in unstructured, human-like settings and perform challenging tasks that require smooth and efficient perception-action coordination, balancing generalization and robustness in the face of inevitable real-world uncertainties. Our paradigm shift opens avenues for future groundbreaking research rooted in SIREN's impacts toward continuous robot learning systems that are integrated and evolve with their environment.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2024-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
64289 DARMSTADT
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.