Description du projet
Une nouvelle piste pour l’IA sans fil
Les systèmes de communication sans fil sont confrontés au défi de devoir traiter toujours plus de données dans des environnements dynamiques. Les méthodes traditionnelles de conception des récepteurs peinent à suivre l’évolution rapide des canaux sans fil. Qui plus est, la puissance et les ressources informatiques des dispositifs sont limitées, ce qui complexifie le traitement de grandes quantités de données. Les solutions d’IA actuelles, qui s’appuient sur d’énormes réseaux pré-entraînés, sont mal adaptés à ces conditions. Le projet FLAIR, financé par le CER, entend résoudre ces problèmes en créant une nouvelle forme d’IA flexible, conçue spécifiquement pour les communications sans fil. Il concentre ses efforts sur la conception de récepteurs légers, l’apprentissage continu et l’utilisation efficace des données, proposant une approche plus adaptable et plus respectueuse des ressources.
Objectif
Artificial intelligence (AI) is envisioned to play a key role in future wireless technologies, with deep neural networks (DNNs) enabling digital receivers to learn to operate in challenging communication scenarios. However, wireless receiver design poses unique challenges that fundamentally differ from those encountered in traditional deep learning domains. The main challenges arise from the dynamic nature of wireless communications, which causes continual changes to the data distribution, combined with the limited power and computational resources of wireless devices. These challenges impair conventional AI based on offline trained massive DNNs. Our ambitious goal is to introduce a new form of flexible lightweight AI that is particularly tailored for wireless communications. Our approach is based on a holistically revisiting the three fundamental pillars of AI – the architecture, dictating the family of learned mappings; the training algorithm that tunes the architecture; and the data based on which learning is carried out. Accordingly, we focus on three objectives – 1) design trainable receiver architectures that are lightweight and support adaptation to rapid channel variations; 2) establish a new learning paradigm that deviates from conventional training, and is based on viewing continual learning as a dynamic system; and 3) propose techniques to accumulate online data sets that are sufficiently informative for learning purposes while being small enough not to induce notable complexity in training. This is a fundamental depart from conventional deep learning, based on highly-parameterized DNNs trained with massive data sets using lengthy learning procedures. Our preliminary data show that this paradigm shift achieves substantial performance, robustness, and complexity gains over conventional deep receivers. The project will transform how communications systems are studied, and profoundly impact a multitude of applications that rely on wireless communications.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
HORIZON-ERC - HORIZON ERC Grants
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) ERC-2024-STG
Voir tous les projets financés au titre de cet appelInstitution d’accueil
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
84105 Beer Sheva
Israël
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.