Objective
Life’s biological materials are animate materials, capable of adapting to their surroundings via actively changing in response to the environment. A key distinguishing feature of animate materials is their ability to autonomously make decisions over how to respond. An example of an animate material is your skin: on cold days the hairs on your skin rise to trap warm air without your conscious thought.
The ability of living materials to make decisions arises from biochemical reaction networks (e.g. protein signalling) in the material. The networks process environmental information and decide how to adapt the material in response. Artificial animate materials promise to be superior for many applications (e.g. soft robots, MedTech) compared to their inert counterparts as their decision-making abilities will enable them to leverage advantageous events into better outcomes and limit the damage from disadvantageous ones. However, currently, there is not a well-established route to fabricate artificial animate materials.
eBioNetAniMat charts a pathway to a new generation of electrochemically programmable artificial animate materials that act as soft actuators capable of autonomously making decisions about their movement. Novel, protein-based chemical reaction networks integrated into the actuators will process electrochemical stimuli and make decisions over how to generate chemo-mechanical motion, e.g. peristalsis, rotation. I will develop a method for electrochemically controlling protein-activity and use this to construct a series of novel, electrochemically programmable protein networks of increasing complexity. I will develop a new method for electrochemical fabrication of patterned hydrogels with new protein redox-binding tools. Finally, I will unite the new protein networks and gels together to make novel artificial animate actuators, that will be biocompatible, integrable with electronic devices and have potentially transformative impacts in MedTech + soft robots.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2024-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
B15 2TT Birmingham
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.